|
--- |
|
library_name: transformers |
|
tags: |
|
- llm-jp |
|
- japanese |
|
- instruction-tuning |
|
--- |
|
|
|
# Model Card for yuhkis/llm-jp-3-13b-finetune |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
This is a LoRA-tuned version of LLM-jp-3-13b, fine-tuned on the Ichikara Instruction dataset. |
|
|
|
- **Developed by:** Yuhki Shiraishi |
|
- **Model type:** Instruction-tuned Japanese Language Model |
|
- **Language:** Japanese |
|
- **License:** CC-BY-NC-SA |
|
- **Finetuned from model:** llm-jp/llm-jp-3-13b |
|
|
|
## Uses |
|
|
|
### Output Generation and Format |
|
|
|
#### Implementation Details |
|
|
|
To generate output in the required JSONL format: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from peft import PeftModel |
|
import torch |
|
from tqdm import tqdm |
|
import json |
|
|
|
# Load model and tokenizer |
|
model_id = "yuhkis/llm-jp-3-13b-finetune" |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token=HF_TOKEN |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token=HF_TOKEN) |
|
|
|
# Generate outputs |
|
results = [] |
|
for data in tqdm(datasets): |
|
input = data["input"] |
|
prompt = f"""### 指示 |
|
{input} |
|
### 回答 |
|
""" |
|
|
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
attention_mask = torch.ones_like(tokenized_input) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
attention_mask=attention_mask, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.eos_token_id |
|
)[0] |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
results.append({"task_id": data["task_id"], "output": output}) |
|
|
|
# Save results to JSONL file |
|
with open("results.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |
|
|
|
#### Output Format Specification |
|
|
|
Required fields in the JSONL output: |
|
- task_id: Task identifier (integer) |
|
- output: Generated response (string) |
|
|
|
Example output format: |
|
```json |
|
{"task_id": 0, "output": "応答テキスト"} |
|
``` |
|
|
|
Note: While additional fields (e.g., input, eval_aspect) may be included, only task_id and output are required for submission. |
|
``` |
|
|
|
### Out-of-Scope Use |
|
|
|
This model should not be used for: |
|
- Commercial applications due to license restrictions |
|
- Critical decision-making without human oversight |
|
- Applications requiring strict reliability guarantees |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
- The model inherits biases from its training data |
|
- Output quality may vary depending on input complexity |
|
- The model should not be used for making critical decisions without human oversight |
|
|
|
### Recommendations |
|
|
|
Users should be aware of the model's limitations and verify outputs when used in applications. |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
- Dataset: Ichikara Instruction Dataset |
|
|
|
### Training Procedure |
|
|
|
- **Training regime:** bf16 mixed precision |
|
- **Library:** 🤗 Transformers |
|
- **Optimization:** LoRA (Low-Rank Adaptation) |
|
|
|
## Technical Specifications |
|
|
|
### Model Architecture |
|
|
|
- Base model: LLM-jp-3-13b |
|
- Adaptation method: LoRA |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
```bibtex |
|
@misc{shiraishi2024llm, |
|
title={LLM-jp-3-13b-finetune: Instruction-tuned Japanese Language Model}, |
|
author={Yuhki Shiraishi}, |
|
year={2024}, |
|
publisher={Hugging Face}, |
|
howpublished={\url{https://huggingface.co/yuhkis/llm-jp-3-13b-finetune}} |
|
} |
|
``` |
|
|
|
**Base Model Citation:** |
|
```bibtex |
|
@misc{llm-jp2024, |
|
title={LLM-jp-3: Large Language Model for Japanese}, |
|
author={LLM-jp Project Team}, |
|
year={2024}, |
|
publisher={Hugging Face}, |
|
howpublished={\url{https://huggingface.co/llm-jp/llm-jp-3-13b}} |
|
} |
|
``` |
|
|
|
**Training Data Citation:** |
|
``` |
|
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. |
|
ichikara-instruction: LLMのための日本語インストラクションデータの構築. |
|
言語処理学会第30回年次大会(2024) |
|
``` |
|
|
|
## Model Card Contact |
|
|
|
**Primary Contact:** |
|
- Name: Yuhki Shiraishi |
|
- GitHub: [@yuhkis](https://github.com/yuhkis) |
|
|
|
For questions regarding this model, please open an issue in the GitHub repository or contact via HuggingFace discussion forum. |
|
|
|
Please include "LLM-jp-3-13b-finetune" in the subject line of any correspondence. |
|
|