File size: 1,927 Bytes
6a9da12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: ys7yoo/nli_roberta-large_lr1e-05_wd1e-03_ep3
tags:
- generated_from_trainer
datasets:
- klue
model-index:
- name: sts_nli_roberta-large_lr1e-05_wd1e-03_ep3_lr1e-05_wd1e-03_ep5_ckpt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sts_nli_roberta-large_lr1e-05_wd1e-03_ep3_lr1e-05_wd1e-03_ep5_ckpt

This model is a fine-tuned version of [ys7yoo/nli_roberta-large_lr1e-05_wd1e-03_ep3](https://huggingface.co/ys7yoo/nli_roberta-large_lr1e-05_wd1e-03_ep3) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3191
- Mse: 0.3191
- Mae: 0.4161
- R2: 0.8539

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mse    | Mae    | R2     |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| 1.0641        | 1.0   | 183  | 0.5074          | 0.5074 | 0.5341 | 0.7676 |
| 0.1359        | 2.0   | 366  | 0.3199          | 0.3199 | 0.4232 | 0.8535 |
| 0.0958        | 3.0   | 549  | 0.3589          | 0.3589 | 0.4349 | 0.8356 |
| 0.0748        | 4.0   | 732  | 0.3385          | 0.3385 | 0.4284 | 0.8450 |
| 0.0617        | 5.0   | 915  | 0.3191          | 0.3191 | 0.4161 | 0.8539 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.0
- Tokenizers 0.13.3