File size: 2,744 Bytes
0cefe6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ac979
0cefe6d
 
 
 
 
 
f3ac979
0cefe6d
 
 
 
 
f3ac979
0cefe6d
 
 
 
 
 
 
f3ac979
0cefe6d
 
f3ac979
0cefe6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
---
# MedKLIP Checkpoint Model Card

A retrained MedKLIP model for benchmarking medical vision-language pre-training methods within the BenchX framework.

## Model Details
- **Model Type**: MedKLIP
- **Architecture**: ResNet-50 image encoder and custom BERT text encoder
- **Original Papers**: [MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training in Radiology](https://arxiv.org/abs/2301.02228)
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX

## Intended Use
- **Primary Use Cases**:
  - Benchmarking performance for Medical Image Classification
  - Benchmarking performance for Medical Image Segmentation
  - Benchmarking performance for Medical Report Generation

## Pre-Training Data
- **Dataset**: 
  - Data source(s): MIMIC-CXR
  - Types of medical images: Frontal chest X-rays
  - Text data type: Associated radiology reports

## Prerequisites

Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX. 

## Training & Evaluation

### 1. Classification

To fine-tune MedKLIP for classification, run this command:

```
python bin/train.py config/classification/<dataset_name>/medklip.yml
```

### 2. Segmentation
To fine-tune MedKLIP for segmentation, run this command:

```
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/medklip.yml
```

### 3. Report Generation
To fine-tune MedKLIP for report generation, run this command:
```
python bin/train.py config/report_generation/<dataset_name>/medklip.yml
```

### 4. Evaluation
To evaluate fine-tuned MedKLIP models, run:

```
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/medklip.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>

# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/medklip.yml <path_to_checkpoint>
```

## Citations
```bibtex
@inproceedings{wu2023medklip,
  title={{MedKLIP}: Medical Knowledge Enhanced Language-Image Pre-Training},
  author={Wu, Chaoyi and Zhang, Xiaoman and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
  journal={Proceedings of ICCV},
  pages = "21372--21383",
  year={2023}
}
```
```bibtex
@inproceedings{zhou2024benchx,
  title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
  author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
  booktitle={Proceedings of NeurIPS},
  year={2024}
}
```