File size: 6,731 Bytes
932d265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch

from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from transformers import (
    BertTokenizer, BertForSequenceClassification, BertConfig,
    Trainer, TrainingArguments, DataCollatorWithPadding,
    EarlyStoppingCallback
)
from datasets import Dataset

# ---------------- CONFIGURASI ---------------- #
# Kamu bisa pindahkan ini ke `src/config.py` kalau mau lebih modular
MODEL_NAME = "indobenchmark/indobert-base-p1"
MODEL_DIR = "/content/drive/MyDrive/model-spam/"  # Ganti sesuai path drive kamu
MAX_LENGTH = 128
BATCH_SIZE = 16
LEARNING_RATE = 2e-5
NUM_EPOCHS = 4
WEIGHT_DECAY = 0.01

# ---------------- TOKENIZE FUNCTION ---------------- #
def tokenize_function(tokenizer, examples):
    return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=MAX_LENGTH)

# ---------------- METRICS ---------------- #
from sklearn.metrics import accuracy_score, precision_recall_fscore_support

def compute_metrics(pred):
    labels = pred.label_ids
    preds = np.argmax(pred.predictions, axis=1)
    acc = accuracy_score(labels, preds)
    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary")
    return {
        "accuracy": acc,
        "precision": precision,
        "recall": recall,
        "f1": f1,
    }

# ---------------- CALLBACK UNTUK PLOT ---------------- #
class CustomCallback(EarlyStoppingCallback):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.train_loss = []
        self.val_loss = []
        self.accuracy = []

    def on_log(self, args, state, control, logs=None, **kwargs):
        if 'loss' in logs:
            self.train_loss.append(logs['loss'])

    def on_evaluate(self, args, state, control, metrics=None, **kwargs):
        if metrics:
            if 'eval_loss' in metrics:
                self.val_loss.append(metrics['eval_loss'])
            if 'eval_accuracy' in metrics:
                self.accuracy.append(metrics['eval_accuracy'])

            plt.figure(figsize=(12, 5))
            plt.subplot(1, 2, 1)
            plt.plot(self.train_loss, label='Training Loss')
            plt.plot(self.val_loss, label='Validation Loss')
            plt.title('Training and Validation Loss')
            plt.xlabel('Step')
            plt.ylabel('Loss')
            plt.legend()

            plt.subplot(1, 2, 2)
            plt.plot(self.accuracy, label='Accuracy', color='green')
            plt.title('Validation Accuracy')
            plt.xlabel('Epoch')
            plt.ylabel('Accuracy')
            plt.legend()

            plt.tight_layout()
            plt.savefig("training_metrics.png")
            plt.close()

# ---------------- CONFUSION MATRIX ---------------- #
def plot_confusion_matrix(trainer, dataset, filename="confusion_matrix.png"):
    predictions = trainer.predict(dataset)
    preds = np.argmax(predictions.predictions, axis=-1)
    labels = predictions.label_ids

    cm = confusion_matrix(labels, preds)
    plt.figure(figsize=(6, 6))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
                xticklabels=['Non Spam', 'Spam'],
                yticklabels=['Non Spam', 'Spam'])
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.savefig(filename)
    plt.close()

# ---------------- MAIN FUNCTION ---------------- #
def train_model():
    # Load dataset
    df = pd.read_csv("data/datasetspam.csv")[["text", "label"]].dropna()

    # Split data
    df_train_val, df_test = train_test_split(
        df, test_size=0.15, random_state=42, stratify=df["label"]
    )

    df_train, df_val = train_test_split(
        df_train_val, test_size=0.15, random_state=42, stratify=df_train_val["label"]
    )

    print(f"Train: {len(df_train)}, Val: {len(df_val)}, Test: {len(df_test)}")

    # Tokenizer dan konfigurasi
    tokenizer = BertTokenizer.from_pretrained(MODEL_NAME)

    config = BertConfig.from_pretrained(
        MODEL_NAME,
        num_labels=2,
        hidden_dropout_prob=0.3,
        attention_probs_dropout_prob=0.3,
        label_smoothing_factor=0.1
    )

    model = BertForSequenceClassification.from_pretrained(MODEL_NAME, config=config)

    # Dataset Huggingface
    train_dataset = Dataset.from_pandas(df_train.reset_index(drop=True))
    val_dataset = Dataset.from_pandas(df_val.reset_index(drop=True))
    test_dataset = Dataset.from_pandas(df_test.reset_index(drop=True))

    train_dataset = train_dataset.map(lambda x: tokenize_function(tokenizer, x), batched=True)
    val_dataset = val_dataset.map(lambda x: tokenize_function(tokenizer, x), batched=True)
    test_dataset = test_dataset.map(lambda x: tokenize_function(tokenizer, x), batched=True)

    # Collator
    data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding='longest', max_length=MAX_LENGTH)

    # Training args
    training_args = TrainingArguments(
        output_dir="./results",
        eval_strategy="epoch",
        save_strategy="epoch",
        logging_strategy="epoch",
        learning_rate=LEARNING_RATE,
        per_device_train_batch_size=BATCH_SIZE,
        per_device_eval_batch_size=BATCH_SIZE,
        num_train_epochs=NUM_EPOCHS,
        weight_decay=WEIGHT_DECAY,
        load_best_model_at_end=True,
        metric_for_best_model="accuracy",
        greater_is_better=True,
        report_to="none",
        save_total_limit=1,
    )

    # Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
        callbacks=[
            CustomCallback(),
            EarlyStoppingCallback(early_stopping_patience=2)
        ]
    )

    trainer.train()

    # Simpan hasil visualisasi
    plot_confusion_matrix(trainer, test_dataset)

    # Simpan model dan tokenizer
    os.makedirs(MODEL_DIR, exist_ok=True)

    # Simpan cara 1: native transformers
    model.save_pretrained(MODEL_DIR)
    tokenizer.save_pretrained(MODEL_DIR)

    # Simpan cara 2: PyTorch state_dict
    torch.save(model.state_dict(), os.path.join(MODEL_DIR, "model.pt"))

    print("✅ Training selesai. Model dan tokenizer berhasil disimpan.")

# ---------------- ENTRY POINT ---------------- #
if __name__ == "__main__":
    train_model()