File size: 6,731 Bytes
932d265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from transformers import (
BertTokenizer, BertForSequenceClassification, BertConfig,
Trainer, TrainingArguments, DataCollatorWithPadding,
EarlyStoppingCallback
)
from datasets import Dataset
# ---------------- CONFIGURASI ---------------- #
# Kamu bisa pindahkan ini ke `src/config.py` kalau mau lebih modular
MODEL_NAME = "indobenchmark/indobert-base-p1"
MODEL_DIR = "/content/drive/MyDrive/model-spam/" # Ganti sesuai path drive kamu
MAX_LENGTH = 128
BATCH_SIZE = 16
LEARNING_RATE = 2e-5
NUM_EPOCHS = 4
WEIGHT_DECAY = 0.01
# ---------------- TOKENIZE FUNCTION ---------------- #
def tokenize_function(tokenizer, examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=MAX_LENGTH)
# ---------------- METRICS ---------------- #
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
def compute_metrics(pred):
labels = pred.label_ids
preds = np.argmax(pred.predictions, axis=1)
acc = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary")
return {
"accuracy": acc,
"precision": precision,
"recall": recall,
"f1": f1,
}
# ---------------- CALLBACK UNTUK PLOT ---------------- #
class CustomCallback(EarlyStoppingCallback):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.train_loss = []
self.val_loss = []
self.accuracy = []
def on_log(self, args, state, control, logs=None, **kwargs):
if 'loss' in logs:
self.train_loss.append(logs['loss'])
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if metrics:
if 'eval_loss' in metrics:
self.val_loss.append(metrics['eval_loss'])
if 'eval_accuracy' in metrics:
self.accuracy.append(metrics['eval_accuracy'])
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(self.train_loss, label='Training Loss')
plt.plot(self.val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Step')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(self.accuracy, label='Accuracy', color='green')
plt.title('Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.tight_layout()
plt.savefig("training_metrics.png")
plt.close()
# ---------------- CONFUSION MATRIX ---------------- #
def plot_confusion_matrix(trainer, dataset, filename="confusion_matrix.png"):
predictions = trainer.predict(dataset)
preds = np.argmax(predictions.predictions, axis=-1)
labels = predictions.label_ids
cm = confusion_matrix(labels, preds)
plt.figure(figsize=(6, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['Non Spam', 'Spam'],
yticklabels=['Non Spam', 'Spam'])
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.savefig(filename)
plt.close()
# ---------------- MAIN FUNCTION ---------------- #
def train_model():
# Load dataset
df = pd.read_csv("data/datasetspam.csv")[["text", "label"]].dropna()
# Split data
df_train_val, df_test = train_test_split(
df, test_size=0.15, random_state=42, stratify=df["label"]
)
df_train, df_val = train_test_split(
df_train_val, test_size=0.15, random_state=42, stratify=df_train_val["label"]
)
print(f"Train: {len(df_train)}, Val: {len(df_val)}, Test: {len(df_test)}")
# Tokenizer dan konfigurasi
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME)
config = BertConfig.from_pretrained(
MODEL_NAME,
num_labels=2,
hidden_dropout_prob=0.3,
attention_probs_dropout_prob=0.3,
label_smoothing_factor=0.1
)
model = BertForSequenceClassification.from_pretrained(MODEL_NAME, config=config)
# Dataset Huggingface
train_dataset = Dataset.from_pandas(df_train.reset_index(drop=True))
val_dataset = Dataset.from_pandas(df_val.reset_index(drop=True))
test_dataset = Dataset.from_pandas(df_test.reset_index(drop=True))
train_dataset = train_dataset.map(lambda x: tokenize_function(tokenizer, x), batched=True)
val_dataset = val_dataset.map(lambda x: tokenize_function(tokenizer, x), batched=True)
test_dataset = test_dataset.map(lambda x: tokenize_function(tokenizer, x), batched=True)
# Collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding='longest', max_length=MAX_LENGTH)
# Training args
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="epoch",
save_strategy="epoch",
logging_strategy="epoch",
learning_rate=LEARNING_RATE,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
num_train_epochs=NUM_EPOCHS,
weight_decay=WEIGHT_DECAY,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
greater_is_better=True,
report_to="none",
save_total_limit=1,
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[
CustomCallback(),
EarlyStoppingCallback(early_stopping_patience=2)
]
)
trainer.train()
# Simpan hasil visualisasi
plot_confusion_matrix(trainer, test_dataset)
# Simpan model dan tokenizer
os.makedirs(MODEL_DIR, exist_ok=True)
# Simpan cara 1: native transformers
model.save_pretrained(MODEL_DIR)
tokenizer.save_pretrained(MODEL_DIR)
# Simpan cara 2: PyTorch state_dict
torch.save(model.state_dict(), os.path.join(MODEL_DIR, "model.pt"))
print("✅ Training selesai. Model dan tokenizer berhasil disimpan.")
# ---------------- ENTRY POINT ---------------- #
if __name__ == "__main__":
train_model()
|