File size: 1,603 Bytes
9ccbda6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: mit
base_model: yomilimi/Gyeongsang_decoder
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: Jeolla_encoder
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Jeolla_encoder
This model is a fine-tuned version of [yomilimi/Gyeongsang_decoder](https://huggingface.co/yomilimi/Gyeongsang_decoder) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0126
- Bleu: 89.0253
- Gen Len: 14.0976
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.0152 | 1.0 | 15477 | 0.0140 | 88.7453 | 14.1001 |
| 0.0133 | 2.0 | 30954 | 0.0130 | 88.9598 | 14.0964 |
| 0.0109 | 3.0 | 46431 | 0.0126 | 89.0253 | 14.0976 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|