File size: 7,667 Bytes
be4e6f5
 
 
 
4981657
be4e6f5
 
 
 
 
552cf9a
be4e6f5
 
 
2f63b5b
 
 
 
 
 
 
be4e6f5
 
4981657
be4e6f5
 
 
 
4981657
 
 
 
 
be4e6f5
4981657
be4e6f5
 
 
4981657
be4e6f5
 
 
14bd8e0
 
 
 
 
 
 
 
be4e6f5
 
2f63b5b
 
 
 
 
 
 
 
 
 
 
be4e6f5
 
4981657
be4e6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4981657
be4e6f5
 
 
 
2f63b5b
 
 
 
 
 
afb06a1
8b99783
ee51cb8
2f63b5b
 
be4e6f5
 
4981657
be4e6f5
 
 
 
 
 
4981657
be4e6f5
 
 
 
2f63b5b
14bd8e0
2f63b5b
 
 
 
 
 
 
be4e6f5
 
 
 
 
 
 
 
 
 
4981657
 
 
be4e6f5
4981657
 
 
 
be4e6f5
 
 
 
 
 
 
 
 
 
 
 
 
2f63b5b
 
 
 
 
 
 
be4e6f5
 
4981657
be4e6f5
 
 
 
 
4981657
 
be4e6f5
 
4981657
 
 
be4e6f5
 
 
4981657
be4e6f5
 
 
 
 
b2d16e9
83d3a3b
be4e6f5
 
83d3a3b
 
be4e6f5
 
83d3a3b
be4e6f5
 
a9af6e4
 
 
4981657
a9af6e4
4981657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9af6e4
 
 
4273817
 
a9af6e4
be4e6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import numpy as np\n",
    "from models_cifm.cifm import CIFM\n",
    "import scanpy as sc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1. load model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "18d58ba0049e4560b7bd0916fbd6ea33",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors:   0%|          | 0.00/569M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def load_model():\n",
    "    args_model = torch.load('./models_cifm/args.pt')\n",
    "    device = 'cpu' # or 'cuda' if you have a GPU\n",
    "    model = CIFM.from_pretrained('ynyou/CIFM', args=args_model).to(device)\n",
    "    model.channel2ensembl_ids_source = torch.load('./models_cifm/channel2ensembl.pt')\n",
    "    model.eval()\n",
    "    return model\n",
    "model = load_model()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2. load and preprocess sample adata\n",
    "- some requirements for adata:\n",
    "- ```adata.X```: need to the raw count\n",
    "- ```adata.obsm['spatial']```: the coordinates of cells in the unit of micrometer\n",
    "- if in a different unit, it might result in a weird geometric graph: we use a radius 20 (micrometer) to construct the geometric graph in the model, so a different unit might result in a overly sparse or dense graph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AnnData object with n_obs × n_vars = 24844 × 18289\n",
       "    obs: 'in_tissue'\n",
       "    var: 'feature_types', 'genome', 'gene_names'\n",
       "    uns: 'log1p'\n",
       "    obsm: 'spatial'\n",
       "    layers: 'counts'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "adata = sc.read_h5ad('./adata.h5ad')\n",
    "adata.layers['counts'] = adata.X.copy()\n",
    "sc.pp.normalize_total(adata, target_sum=1e4)\n",
    "sc.pp.log1p(adata)\n",
    "adata"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3. match feature channels\n",
    "- we need a list which maps feature channels to ensemble ids: ```channel2ensembl_ids_target```\n",
    "- format: ```channel2ensembl_ids_target = [[ensemblid1_for_channel1, ensemblid2_for_channel1, ...], [ensemblid1_for_channel2, ensemblid2_for_channel2, ...], ...]```\n",
    "- one channel could correspond to multiple ensemble ids, e.g., when in your original data the channels are annotated with gene names\n",
    "- you can use BioMart to map your gene name into one or multiple ensemble ids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "matching 18289 gene channels out of 18289 ; unmatched channels: []\n"
     ]
    }
   ],
   "source": [
    "channel2ensembl_ids_target = [[i] for i in adata.var.index.tolist()]\n",
    "model.channel_matching(channel2ensembl_ids_target, model.channel2ensembl_ids_source)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 4. embed the microenvironments centered at each cell"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(tensor([[-0.4326, -0.8625,  0.1121,  ...,  0.4980,  0.3855, -0.1965],\n",
       "         [-0.6833, -0.9950,  0.1927,  ..., -0.2064,  0.6193,  0.0387],\n",
       "         [-0.2099, -0.9877,  0.3462,  ...,  0.2102,  0.6807, -0.2155],\n",
       "         ...,\n",
       "         [-0.0187, -0.8444,  0.3058,  ...,  0.1030,  0.8362, -0.1859],\n",
       "         [-0.5535, -0.8201,  0.7805,  ..., -0.1402,  0.5221, -0.3520],\n",
       "         [-0.9339, -0.8467,  0.0600,  ...,  0.0406,  0.3608,  0.3418]]),\n",
       " torch.Size([24844, 1024]))"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "with torch.no_grad():\n",
    "    embeddings = model.embed(adata)\n",
    "embeddings, embeddings.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 5. infer the potential gene expressions at certain locations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(tensor([[0.0000, 0.0000, 2.8781,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 2.9699,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         ...,\n",
       "         [0.0000, 0.0000, 3.2570,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000]]),\n",
       " torch.Size([10, 18289]))"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# we here randomly generate the locations for the cells just for demonstration\n",
    "target_locs = np.random.rand(10, 2)\n",
    "x_min, x_max = adata.obsm['spatial'][:, 0].min(), adata.obsm['spatial'][:, 0].max()\n",
    "y_min, y_max = adata.obsm['spatial'][:, 1].min(), adata.obsm['spatial'][:, 1].max()\n",
    "target_locs[:, 0] = target_locs[:, 0] * (x_max - x_min) + x_min\n",
    "target_locs[:, 1] = target_locs[:, 1] * (y_max - y_min) + y_min\n",
    "\n",
    "with torch.no_grad():\n",
    "    expressions = model.predict_cells_at_locations(adata, target_locs)\n",
    "expressions, expressions.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(tensor([[0.0000, 0.0000, 0.0002,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0002,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         ...,\n",
       "         [0.0000, 0.0000, 0.0003,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],\n",
       "         [0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000]]),\n",
       " torch.Size([10, 18289]))"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# you can convert it into normalize counts\n",
    "counts_normalized = np.exp(expressions) - 1\n",
    "counts_normalized = counts_normalized / counts_normalized.sum(axis=1, keepdims=True)\n",
    "counts_normalized, counts_normalized.shape"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}