File size: 2,341 Bytes
3fbfbbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- audio
- automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
widget:
- example_title: Sample 1
src: sample_ar.mp3
model-index:
- name: whisper-small-ar-v1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_1
type: mozilla-foundation/common_voice_16_1
config: ar
split: test
args: ar
metrics:
- name: Wer
type: wer
value: 158.15321276282899
language:
- ar
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
# whisper-small-ar-v1
This model is for Arabic automatic speech recognition (ASR). It is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Arabic portion of the `mozilla-foundation/common_voice_16_1` dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3354
- Wer: 158.1532
## Model description
Whisper model fine-tuned on Arabic data, following the [official tutorial](https://huggingface.co/blog/fine-tune-whisper).
## Intended uses & limitations
The model is not fully trained yet. Hence, it is not intended for professional use.
## Training and evaluation data
Training Data: CommonVoice (v16.1) Arabic train + validation splits
Validation Data: CommonVoice (v16.1) Arabic test split
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2742 | 0.82 | 1000 | 0.3790 | 275.2463 |
| 0.1625 | 1.65 | 2000 | 0.3353 | 228.5252 |
| 0.1002 | 2.47 | 3000 | 0.3311 | 238.8858 |
| 0.0751 | 3.3 | 4000 | 0.3354 | 158.1532 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2 |