|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:18644575 |
|
- loss:RZTKMatryoshka2dLoss |
|
base_model: intfloat/multilingual-e5-base |
|
widget: |
|
- source_sentence: 'query: кисточки для макияжа' |
|
sentences: |
|
- 'passage: Парасоля компактна складана Airton Z3510 механіка Чорна' |
|
- 'passage: Корпус FrimeCom LB-081 BL 400W 12cm' |
|
- 'passage: Кисті для макіяжу Kylie 12 шт набір кистей пензлика 12 шт Білі' |
|
- source_sentence: 'query: hg средство' |
|
sentences: |
|
- 'passage: Відеореєстратор Globex GE-115' |
|
- 'passage: Плямовивідник для тканин HG Oxi 0.5 кг (324050106)' |
|
- 'passage: Мережевий подовжувач MERLION B530, 10А 220В, 5 розеток, 3,0 м, перетин |
|
3х0,75мм, чорний Q30' |
|
- source_sentence: 'query: 471 картридж' |
|
sentences: |
|
- 'passage: Картридж Canon CLI-471 XL PIXMA MG5740/MG6840 Grey (0350C001)' |
|
- 'passage: Ключница Valenta кожаная Синяя (ХК41612)' |
|
- 'passage: Біговели Діаметр коліс 12" (30.5 см)' |
|
- source_sentence: 'query: кольцо' |
|
sentences: |
|
- 'passage: Сумки SumWin Для кого Для женщин Вид Сумки. Цвет Черный Количество грузовых |
|
мест 1 Модель сумки Кросс-боди Материал Искусственная кожа Страна регистрации |
|
бренда Украина Страна-производитель товара Китай Тип гарантийного талона Гарантия |
|
по чеку Форма Круглая Доставка Доставка в магазины ROZETKA' |
|
- 'passage: Корпуси Phanteks Форм-фактор материнської плати ATX Тип корпусу Fulltower |
|
Колір Чорний Кількість внутрішніх відсіків 3.5" 13 теги Круті Матеріал Алюміній' |
|
- 'passage: Кольцо с бабочкой "Mini Butterfly", серебро' |
|
- source_sentence: 'query: сумочка женская' |
|
sentences: |
|
- 'passage: Сумки Без бренда Для кого Для женщин Цвет Черный Стиль Повседневные |
|
Модель сумки Кросс-боди Материал Экокожа Страна регистрации бренда Украина Страна-производитель |
|
товара Китай Количество отделений 3 Форма Трапеция Застежка Магнит' |
|
- 'passage: Пенали Kite Гарантія 14 днів Колір Бірюзовий Стать Для дівчаток Матеріал |
|
Поліестер Кількість відділень 1 Кількість вантажних місць 1 Країна реєстрації |
|
бренда Німеччина Країна-виробник товару Китай Вага, г 350 Тип гарантійного талона |
|
Гарантія по чеку Особливості З наповненням Форма Книжка' |
|
- 'passage: Шампунь PROFIStyle Класс косметики Профессиональная Пол Для женщин Количество |
|
грузовых мест 1 Страна регистрации бренда Украина Серия Profistyle Страна-производитель |
|
товара Украина Объем 5 л Тип волос Все типы волос Назначение Для очищения волос |
|
Тип гарантийного талона Без гарантийного талона Доставка Доставка в магазины ROZETKA |
|
Доставка Готов к отправке' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
- dot_ndcg@1 |
|
- dot_mrr@1 |
|
model-index: |
|
- name: SentenceTransformer based on intfloat/multilingual-e5-base |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: bm full |
|
type: bm-full |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.47841472045293704 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.6553432413305025 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7331917905166313 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8283793347487615 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.47841472045293704 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.4861995753715499 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.4876150035385704 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.4910474168435951 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.011351462591853162 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.03449117733770484 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.057669566486942436 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.11452942341940178 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.48926390789530216 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.5827980543479477 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.36280520756352586 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core uk title |
|
type: core-uk-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.6303901437371663 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.8542094455852156 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.9240246406570842 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.973305954825462 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6303901437371663 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.6379192334017795 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.624640657084189 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5196098562628337 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.06432071345934735 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.1941943610200646 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.3154921649259734 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.5135267830369895 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5824689476221301 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7525264007040191 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.5641261600874217 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core ru title |
|
type: core-ru-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.6416837782340863 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.8562628336755647 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.9229979466119097 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9691991786447639 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6416837782340863 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.6471594798083503 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.633264887063655 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5252566735112937 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.0656523606676101 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.19734738384711206 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.32075535697878377 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.518985171764795 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5898234843670869 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7593062481666181 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.5728620912840142 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core uk options |
|
type: core-uk-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.4948665297741273 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7464065708418891 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.837782340862423 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9322381930184805 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.4948665297741273 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.4989733059548255 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.49507186858316227 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.45400410677618075 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04964465358761168 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.15084259771646535 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.24819367614844123 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.4471062523959915 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.4895423721577878 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.6382761318079595 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.49557058138522575 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core ru options |
|
type: core-ru-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.48767967145790553 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7505133470225873 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.8367556468172485 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9291581108829569 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.48767967145790553 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.4986310746064339 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.4975359342915811 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.45195071868583164 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04851468328413007 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.14950617034051025 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.2481739767794847 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.44488472424288944 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.48827111188574646 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.6368082037743232 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.4951823868475039 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: options uk title |
|
type: options-uk-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.7572383073496659 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.9376391982182628 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.9665924276169265 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9933184855233853 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.7572383073496659 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.7490720118782479 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.711804008908686 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5541202672605791 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.11543915129661232 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.34200363482100676 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.5370094518201423 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.7924881972766159 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.7650169670738622 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.850054795489094 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.7380727317887708 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: options ru title |
|
type: options-ru-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.7706013363028953 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.9309576837416481 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.9665924276169265 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9933184855233853 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.7706013363028953 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.746844840386043 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.712249443207127 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5505567928730514 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.11822576705650203 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.3409996400530922 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.5359948514736934 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.7883290428947444 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.7637672715459831 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.8557897620815217 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.7395006608870638 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: options uk options |
|
type: options-uk-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.6325167037861915 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.844097995545657 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.910913140311804 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9487750556792873 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6325167037861915 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.6221232368225686 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.602672605790646 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.49643652561247215 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.09247718997162206 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.27593618334152853 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.4409379348688926 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.6951361370626404 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.6589801178305443 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7480468059532647 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.6414571076888178 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: options ru options |
|
type: options-ru-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.6369710467706013 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.8374164810690423 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.8930957683741648 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9465478841870824 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6369710467706013 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.635486265775798 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.6071269487750557 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.4939866369710468 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.09363496562828412 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.2826698419126036 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.44549921743685666 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.6956133880966844 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.6610343624368801 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7464338742178385 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.6451679716029399 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms uk title |
|
type: rusisms-uk-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.6412698412698413 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7904761904761904 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.8285714285714286 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8857142857142857 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6412698412698413 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.6634920634920635 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.6552380952380952 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.6234920634920637 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04133075530701777 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.1170592846495341 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.17830553909997546 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.31008571089134707 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.6647746031552833 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7268543713781809 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.5853570509786064 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms ru title |
|
type: rusisms-ru-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.6698412698412698 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7777777777777778 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.834920634920635 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8920634920634921 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.6698412698412698 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.6645502645502644 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.6577777777777778 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.626031746031746 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04434422970262397 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.11704562106444193 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.1773543477691105 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.30781876553915866 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.6682830160464889 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7408213655832702 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.592275762720651 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms uk options |
|
type: rusisms-uk-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.5079365079365079 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.6285714285714286 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7174603174603175 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.7904761904761904 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.5079365079365079 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.5058201058201058 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.5161904761904762 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5111111111111111 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.032681042657417864 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.08490359132017175 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.14131766688622155 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.25180769140267506 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5372281406420663 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.5902317964222725 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.4986827236995346 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms ru options |
|
type: rusisms-ru-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.4984126984126984 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.6476190476190476 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7492063492063492 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8063492063492064 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.4984126984126984 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.5195767195767197 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.5276190476190475 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5177777777777778 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.03202754604702237 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.08547386088540315 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.14166544702843223 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.25453386918000204 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5433437983757069 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.5972423784328544 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.5053350497126974 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms corrected uk title |
|
type: rusisms_corrected-uk-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.7120253164556962 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.819620253164557 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.870253164556962 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9113924050632911 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.7120253164556962 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.7183544303797469 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.7082278481012658 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.6683544303797468 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04969812837853694 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.12741782983341862 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.19731659021523865 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.3409923887206817 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.7194597470114055 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7808808016877635 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.6388697195804478 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms corrected ru title |
|
type: rusisms_corrected-ru-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.7088607594936709 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.8291139240506329 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.870253164556962 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9113924050632911 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.7088607594936709 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.7162447257383966 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.7037974683544304 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.6629746835443039 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04888449873376417 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.12829212684740135 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.19987613332490306 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.3356192325461046 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.7127299992462074 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.7792708961221617 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.6395009156047453 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms corrected uk options |
|
type: rusisms_corrected-uk-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.5537974683544303 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7278481012658228 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7848101265822784 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8544303797468354 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.5537974683544303 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.5738396624472574 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.5759493670886076 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5645569620253166 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.0398666442289475 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.10622990404547561 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.16577310801842357 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.28425407965410443 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5965577106105705 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.6513147980711272 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.5594863722365065 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: rusisms corrected ru options |
|
type: rusisms_corrected-ru-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.5727848101265823 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7215189873417721 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7848101265822784 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8607594936708861 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.5727848101265823 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.5822784810126582 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.5810126582278481 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.5655063291139241 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.039125841492212286 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.10198185350545384 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.16299351965480724 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.28079825575547895 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5986535833917944 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.6613936608398633 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.5634230712770681 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core typos uk title |
|
type: core_typos-uk-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.5451745379876797 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7874743326488707 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.8490759753593429 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9117043121149897 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.5451745379876797 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.5492813141683778 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.5277207392197125 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.4458932238193019 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.055501817487715537 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.16799075803409055 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.26738880088922357 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.4420220810379646 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5009599181825904 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.6744923568332187 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.4756860853091724 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core typos ru title |
|
type: core_typos-ru-title |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.5677618069815195 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.7802874743326489 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.8490759753593429 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9075975359342916 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.5677618069815195 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.553388090349076 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.535523613963039 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.4521560574948666 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.05788962617685893 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.16991013827739276 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.2724072401441347 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.4493398516770904 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.5093051901273817 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.6864704540269218 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.48302575127668773 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core typos uk options |
|
type: core_typos-uk-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.42505133470225875 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.6478439425051334 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7433264887063655 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8429158110882957 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.42505133470225875 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.4182067077344285 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.41704312114989733 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.37997946611909655 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04281943186324754 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.12630907755998344 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.20887045080712793 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.37542821461999504 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.41173177598646793 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.5581076236107032 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.40947735972105836 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: core typos ru options |
|
type: core_typos-ru-options |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.42299794661190965 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.6509240246406571 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.7464065708418891 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.8459958932238193 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.42299794661190965 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.42231348391512663 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.41581108829568786 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.376694045174538 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.04208886721644905 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.12759403691355015 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.2076836983626753 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.37292863983662994 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.4101083135252108 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.5588503471203672 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.40851869049399947 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: 'bm full matryoshka dim 768 ' |
|
type: bm-full--matryoshka_dim-768-- |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.47841472045293704 |
|
name: Dot Accuracy@1 |
|
- type: dot_precision@1 |
|
value: 0.47841472045293704 |
|
name: Dot Precision@1 |
|
- type: dot_recall@1 |
|
value: 0.011351462591853162 |
|
name: Dot Recall@1 |
|
- type: dot_ndcg@1 |
|
value: 0.47841472045293704 |
|
name: Dot Ndcg@1 |
|
- type: dot_mrr@1 |
|
value: 0.47841472045293704 |
|
name: Dot Mrr@1 |
|
- type: dot_map@100 |
|
value: 0.36280520756352586 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: 'bm full matryoshka dim 512 ' |
|
type: bm-full--matryoshka_dim-512-- |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.4759377211606511 |
|
name: Dot Accuracy@1 |
|
- type: dot_precision@1 |
|
value: 0.4759377211606511 |
|
name: Dot Precision@1 |
|
- type: dot_recall@1 |
|
value: 0.0114070381458067 |
|
name: Dot Recall@1 |
|
- type: dot_ndcg@1 |
|
value: 0.4759377211606511 |
|
name: Dot Ndcg@1 |
|
- type: dot_mrr@1 |
|
value: 0.4759377211606511 |
|
name: Dot Mrr@1 |
|
- type: dot_map@100 |
|
value: 0.36005063767775514 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: 'bm full matryoshka dim 256 ' |
|
type: bm-full--matryoshka_dim-256-- |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.4759377211606511 |
|
name: Dot Accuracy@1 |
|
- type: dot_precision@1 |
|
value: 0.4759377211606511 |
|
name: Dot Precision@1 |
|
- type: dot_recall@1 |
|
value: 0.011372889899440053 |
|
name: Dot Recall@1 |
|
- type: dot_ndcg@1 |
|
value: 0.4759377211606511 |
|
name: Dot Ndcg@1 |
|
- type: dot_mrr@1 |
|
value: 0.4759377211606511 |
|
name: Dot Mrr@1 |
|
- type: dot_map@100 |
|
value: 0.3488370117998616 |
|
name: Dot Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: 'bm full matryoshka dim 128 ' |
|
type: bm-full--matryoshka_dim-128-- |
|
metrics: |
|
- type: dot_accuracy@1 |
|
value: 0.45222929936305734 |
|
name: Dot Accuracy@1 |
|
- type: dot_precision@1 |
|
value: 0.45222929936305734 |
|
name: Dot Precision@1 |
|
- type: dot_recall@1 |
|
value: 0.010638577599638174 |
|
name: Dot Recall@1 |
|
- type: dot_ndcg@1 |
|
value: 0.45222929936305734 |
|
name: Dot Ndcg@1 |
|
- type: dot_mrr@1 |
|
value: 0.45222929936305734 |
|
name: Dot Mrr@1 |
|
- type: dot_map@100 |
|
value: 0.32466551163194907 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the rozetka_positive_pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Dot Product |
|
- **Training Dataset:** |
|
- rozetka_positive_pairs |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
RZTKSentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue") |
|
# Run inference |
|
sentences = [ |
|
'query: сумочка женская', |
|
'passage: Сумки Без бренда Для кого Для женщин Цвет Черный Стиль Повседневные Модель сумки Кросс-боди Материал Экокожа Страна регистрации бренда Украина Страна-производитель товара Китай Количество отделений 3 Форма Трапеция Застежка Магнит', |
|
'passage: Пенали Kite Гарантія 14 днів Колір Бірюзовий Стать Для дівчаток Матеріал Поліестер Кількість відділень 1 Кількість вантажних місць 1 Країна реєстрації бренда Німеччина Країна-виробник товару Китай Вага, г 350 Тип гарантійного талона Гарантія по чеку Особливості З наповненням Форма Книжка', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Datasets: `bm-full`, `core-uk-title`, `core-ru-title`, `core-uk-options`, `core-ru-options`, `options-uk-title`, `options-ru-title`, `options-uk-options`, `options-ru-options`, `rusisms-uk-title`, `rusisms-ru-title`, `rusisms-uk-options`, `rusisms-ru-options`, `rusisms_corrected-uk-title`, `rusisms_corrected-ru-title`, `rusisms_corrected-uk-options`, `rusisms_corrected-ru-options`, `core_typos-uk-title`, `core_typos-ru-title`, `core_typos-uk-options` and `core_typos-ru-options` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | bm-full | core-uk-title | core-ru-title | core-uk-options | core-ru-options | options-uk-title | options-ru-title | options-uk-options | options-ru-options | rusisms-uk-title | rusisms-ru-title | rusisms-uk-options | rusisms-ru-options | rusisms_corrected-uk-title | rusisms_corrected-ru-title | rusisms_corrected-uk-options | rusisms_corrected-ru-options | core_typos-uk-title | core_typos-ru-title | core_typos-uk-options | core_typos-ru-options | |
|
|:-----------------|:-----------|:--------------|:--------------|:----------------|:----------------|:-----------------|:-----------------|:-------------------|:-------------------|:-----------------|:-----------------|:-------------------|:-------------------|:---------------------------|:---------------------------|:-----------------------------|:-----------------------------|:--------------------|:--------------------|:----------------------|:----------------------| |
|
| dot_accuracy@1 | 0.4784 | 0.6304 | 0.6417 | 0.4949 | 0.4877 | 0.7572 | 0.7706 | 0.6325 | 0.637 | 0.6413 | 0.6698 | 0.5079 | 0.4984 | 0.712 | 0.7089 | 0.5538 | 0.5728 | 0.5452 | 0.5678 | 0.4251 | 0.423 | |
|
| dot_accuracy@3 | 0.6553 | 0.8542 | 0.8563 | 0.7464 | 0.7505 | 0.9376 | 0.931 | 0.8441 | 0.8374 | 0.7905 | 0.7778 | 0.6286 | 0.6476 | 0.8196 | 0.8291 | 0.7278 | 0.7215 | 0.7875 | 0.7803 | 0.6478 | 0.6509 | |
|
| dot_accuracy@5 | 0.7332 | 0.924 | 0.923 | 0.8378 | 0.8368 | 0.9666 | 0.9666 | 0.9109 | 0.8931 | 0.8286 | 0.8349 | 0.7175 | 0.7492 | 0.8703 | 0.8703 | 0.7848 | 0.7848 | 0.8491 | 0.8491 | 0.7433 | 0.7464 | |
|
| dot_accuracy@10 | 0.8284 | 0.9733 | 0.9692 | 0.9322 | 0.9292 | 0.9933 | 0.9933 | 0.9488 | 0.9465 | 0.8857 | 0.8921 | 0.7905 | 0.8063 | 0.9114 | 0.9114 | 0.8544 | 0.8608 | 0.9117 | 0.9076 | 0.8429 | 0.846 | |
|
| dot_precision@1 | 0.4784 | 0.6304 | 0.6417 | 0.4949 | 0.4877 | 0.7572 | 0.7706 | 0.6325 | 0.637 | 0.6413 | 0.6698 | 0.5079 | 0.4984 | 0.712 | 0.7089 | 0.5538 | 0.5728 | 0.5452 | 0.5678 | 0.4251 | 0.423 | |
|
| dot_precision@3 | 0.4862 | 0.6379 | 0.6472 | 0.499 | 0.4986 | 0.7491 | 0.7468 | 0.6221 | 0.6355 | 0.6635 | 0.6646 | 0.5058 | 0.5196 | 0.7184 | 0.7162 | 0.5738 | 0.5823 | 0.5493 | 0.5534 | 0.4182 | 0.4223 | |
|
| dot_precision@5 | 0.4876 | 0.6246 | 0.6333 | 0.4951 | 0.4975 | 0.7118 | 0.7122 | 0.6027 | 0.6071 | 0.6552 | 0.6578 | 0.5162 | 0.5276 | 0.7082 | 0.7038 | 0.5759 | 0.581 | 0.5277 | 0.5355 | 0.417 | 0.4158 | |
|
| dot_precision@10 | 0.491 | 0.5196 | 0.5253 | 0.454 | 0.452 | 0.5541 | 0.5506 | 0.4964 | 0.494 | 0.6235 | 0.626 | 0.5111 | 0.5178 | 0.6684 | 0.663 | 0.5646 | 0.5655 | 0.4459 | 0.4522 | 0.38 | 0.3767 | |
|
| dot_recall@1 | 0.0114 | 0.0643 | 0.0657 | 0.0496 | 0.0485 | 0.1154 | 0.1182 | 0.0925 | 0.0936 | 0.0413 | 0.0443 | 0.0327 | 0.032 | 0.0497 | 0.0489 | 0.0399 | 0.0391 | 0.0555 | 0.0579 | 0.0428 | 0.0421 | |
|
| dot_recall@3 | 0.0345 | 0.1942 | 0.1973 | 0.1508 | 0.1495 | 0.342 | 0.341 | 0.2759 | 0.2827 | 0.1171 | 0.117 | 0.0849 | 0.0855 | 0.1274 | 0.1283 | 0.1062 | 0.102 | 0.168 | 0.1699 | 0.1263 | 0.1276 | |
|
| dot_recall@5 | 0.0577 | 0.3155 | 0.3208 | 0.2482 | 0.2482 | 0.537 | 0.536 | 0.4409 | 0.4455 | 0.1783 | 0.1774 | 0.1413 | 0.1417 | 0.1973 | 0.1999 | 0.1658 | 0.163 | 0.2674 | 0.2724 | 0.2089 | 0.2077 | |
|
| dot_recall@10 | 0.1145 | 0.5135 | 0.519 | 0.4471 | 0.4449 | 0.7925 | 0.7883 | 0.6951 | 0.6956 | 0.3101 | 0.3078 | 0.2518 | 0.2545 | 0.341 | 0.3356 | 0.2843 | 0.2808 | 0.442 | 0.4493 | 0.3754 | 0.3729 | |
|
| **dot_ndcg@10** | **0.4893** | **0.5825** | **0.5898** | **0.4895** | **0.4883** | **0.765** | **0.7638** | **0.659** | **0.661** | **0.6648** | **0.6683** | **0.5372** | **0.5433** | **0.7195** | **0.7127** | **0.5966** | **0.5987** | **0.501** | **0.5093** | **0.4117** | **0.4101** | |
|
| dot_mrr@10 | 0.5828 | 0.7525 | 0.7593 | 0.6383 | 0.6368 | 0.8501 | 0.8558 | 0.748 | 0.7464 | 0.7269 | 0.7408 | 0.5902 | 0.5972 | 0.7809 | 0.7793 | 0.6513 | 0.6614 | 0.6745 | 0.6865 | 0.5581 | 0.5589 | |
|
| dot_map@100 | 0.3628 | 0.5641 | 0.5729 | 0.4956 | 0.4952 | 0.7381 | 0.7395 | 0.6415 | 0.6452 | 0.5854 | 0.5923 | 0.4987 | 0.5053 | 0.6389 | 0.6395 | 0.5595 | 0.5634 | 0.4757 | 0.483 | 0.4095 | 0.4085 | |
|
|
|
#### Information Retrieval |
|
|
|
* Datasets: `bm-full--matryoshka_dim-768--`, `bm-full--matryoshka_dim-512--`, `bm-full--matryoshka_dim-256--` and `bm-full--matryoshka_dim-128--` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | bm-full--matryoshka_dim-768-- | bm-full--matryoshka_dim-512-- | bm-full--matryoshka_dim-256-- | bm-full--matryoshka_dim-128-- | |
|
|:----------------|:------------------------------|:------------------------------|:------------------------------|:------------------------------| |
|
| dot_accuracy@1 | 0.4784 | 0.4759 | 0.4759 | 0.4522 | |
|
| dot_precision@1 | 0.4784 | 0.4759 | 0.4759 | 0.4522 | |
|
| dot_recall@1 | 0.0114 | 0.0114 | 0.0114 | 0.0106 | |
|
| **dot_ndcg@1** | **0.4784** | **0.4759** | **0.4759** | **0.4522** | |
|
| dot_mrr@1 | 0.4784 | 0.4759 | 0.4759 | 0.4522 | |
|
| dot_map@100 | 0.3628 | 0.3601 | 0.3488 | 0.3247 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### rozetka_positive_pairs |
|
|
|
* Dataset: rozetka_positive_pairs |
|
* Size: 18,644,575 training samples |
|
* Columns: <code>query</code> and <code>text</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | text | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 12.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 55.98 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| query | text | |
|
|:-----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>query: xsiomi 9c скло</code> | <code>passage: Защитные стекла Назначение Для мобильных телефонов Цвет Черный Теги Теги Наличие рамки C рамкой Форм-фактор Плоское Клеевой слой По всей поверхности</code> | |
|
| <code>query: xsiomi 9c скло</code> | <code>passage: Захисне скло Glass Full Glue для Xiaomi Redmi 9A/9C/10A (Чорний)</code> | |
|
| <code>query: xsiomi 9c скло</code> | <code>passage: Захисне скло Призначення Для мобільних телефонів Колір Чорний Теги Теги Наявність рамки З рамкою Форм-фактор Плоске Клейовий шар По всій поверхні</code> | |
|
* Loss: <code>sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss</code> with these parameters: |
|
```json |
|
{ |
|
"loss": "RZTKMultipleNegativesRankingLoss", |
|
"n_layers_per_step": 1, |
|
"last_layer_weight": 1.0, |
|
"prior_layers_weight": 1.0, |
|
"kl_div_weight": 1.0, |
|
"kl_temperature": 0.3, |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": 1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### rozetka_positive_pairs |
|
|
|
* Dataset: rozetka_positive_pairs |
|
* Size: 202,564 evaluation samples |
|
* Columns: <code>query</code> and <code>text</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | text | |
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 8.57 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 53.17 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| query | text | |
|
|:--------------------------------------------|:------------------------------------------------------------------------| |
|
| <code>query: создаем нейронную сеть</code> | <code>passage: Створюємо нейронну мережу</code> | |
|
| <code>query: создаем нейронную сеть</code> | <code>passage: Научная и техническая литература Переплет Мягкий</code> | |
|
| <code>query: создаем нейронную сеть</code> | <code>passage: Создаем нейронную сеть (1666498)</code> | |
|
* Loss: <code>sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss</code> with these parameters: |
|
```json |
|
{ |
|
"loss": "RZTKMultipleNegativesRankingLoss", |
|
"n_layers_per_step": 1, |
|
"last_layer_weight": 1.0, |
|
"prior_layers_weight": 1.0, |
|
"kl_div_weight": 1.0, |
|
"kl_temperature": 0.3, |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": 1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 88 |
|
- `per_device_eval_batch_size`: 88 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5.0 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `bf16_full_eval`: True |
|
- `tf32`: True |
|
- `dataloader_num_workers`: 8 |
|
- `load_best_model_at_end`: True |
|
- `optim`: adafactor |
|
- `push_to_hub`: True |
|
- `hub_model_id`: yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue |
|
- `hub_private_repo`: True |
|
- `prompts`: {'query': 'query: ', 'text': 'passage: '} |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 88 |
|
- `per_device_eval_batch_size`: 88 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5.0 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: True |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: True |
|
- `dataloader_num_workers`: 8 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adafactor |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: True |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: {'query': 'query: ', 'text': 'passage: '} |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
- `ddp_static_graph`: False |
|
- `ddp_comm_hook`: bf16 |
|
- `gradient_as_bucket_view`: False |
|
- `num_proc`: 30 |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | bm-full_dot_ndcg@10 | core-uk-title_dot_ndcg@10 | core-ru-title_dot_ndcg@10 | core-uk-options_dot_ndcg@10 | core-ru-options_dot_ndcg@10 | options-uk-title_dot_ndcg@10 | options-ru-title_dot_ndcg@10 | options-uk-options_dot_ndcg@10 | options-ru-options_dot_ndcg@10 | rusisms-uk-title_dot_ndcg@10 | rusisms-ru-title_dot_ndcg@10 | rusisms-uk-options_dot_ndcg@10 | rusisms-ru-options_dot_ndcg@10 | rusisms_corrected-uk-title_dot_ndcg@10 | rusisms_corrected-ru-title_dot_ndcg@10 | rusisms_corrected-uk-options_dot_ndcg@10 | rusisms_corrected-ru-options_dot_ndcg@10 | core_typos-uk-title_dot_ndcg@10 | core_typos-ru-title_dot_ndcg@10 | core_typos-uk-options_dot_ndcg@10 | core_typos-ru-options_dot_ndcg@10 | bm-full--matryoshka_dim-768--_dot_ndcg@1 | bm-full--matryoshka_dim-512--_dot_ndcg@1 | bm-full--matryoshka_dim-256--_dot_ndcg@1 | bm-full--matryoshka_dim-128--_dot_ndcg@1 | |
|
|:----------:|:----------:|:-------------:|:---------------:|:-------------------:|:-------------------------:|:-------------------------:|:---------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:------------------------------:|:------------------------------:|:----------------------------:|:----------------------------:|:------------------------------:|:------------------------------:|:--------------------------------------:|:--------------------------------------:|:----------------------------------------:|:----------------------------------------:|:-------------------------------:|:-------------------------------:|:---------------------------------:|:---------------------------------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:| |
|
| 2.7017 | 143100 | 0.7397 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7167 | 143895 | 0.7745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7317 | 144690 | 0.8018 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7467 | 145485 | 0.7712 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7617 | 146280 | 0.7634 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7767 | 147075 | 0.7801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.7917 | 147870 | 0.7608 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8067 | 148665 | 0.7886 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8218 | 149460 | 0.7534 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8368 | 150255 | 0.7848 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8518 | 151050 | 0.7657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8668 | 151845 | 0.7943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8818 | 152640 | 0.7683 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.8968 | 153435 | 0.7555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9118 | 154230 | 0.7575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9268 | 155025 | 0.7253 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9418 | 155820 | 0.7538 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9568 | 156615 | 0.7708 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9719 | 157410 | 0.7582 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 2.9869 | 158205 | 0.7987 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0002 | 158910 | - | 0.4537 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0019 | 159000 | 0.7604 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0169 | 159795 | 0.7485 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0319 | 160590 | 0.7761 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0469 | 161385 | 0.7606 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0619 | 162180 | 0.7752 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0769 | 162975 | 0.7624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.0919 | 163770 | 0.7764 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1070 | 164565 | 0.7714 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1220 | 165360 | 0.7916 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1370 | 166155 | 0.7484 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1520 | 166950 | 0.7751 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1670 | 167745 | 0.7634 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1820 | 168540 | 0.7549 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.1970 | 169335 | 0.7538 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.2120 | 170130 | 0.7545 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.2270 | 170925 | 0.7738 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.2420 | 171720 | 0.7513 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.2570 | 172515 | 0.7479 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.2721 | 173310 | 0.751 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.2871 | 174105 | 0.7583 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| **3.3002** | **174801** | **-** | **0.4436** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | |
|
| 3.3021 | 174900 | 0.7593 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.3171 | 175695 | 0.7346 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.3321 | 176490 | 0.759 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.3471 | 177285 | 0.7639 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.3621 | 178080 | 0.7699 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.3771 | 178875 | 0.7463 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.3921 | 179670 | 0.7659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4071 | 180465 | 0.7811 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4221 | 181260 | 0.7658 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4372 | 182055 | 0.7529 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4522 | 182850 | 0.7448 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4672 | 183645 | 0.7308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4822 | 184440 | 0.7567 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.4972 | 185235 | 0.7634 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.5122 | 186030 | 0.7619 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.5272 | 186825 | 0.7184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.5422 | 187620 | 0.7555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.5572 | 188415 | 0.7801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.5722 | 189210 | 0.7764 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.5873 | 190005 | 0.7659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6002 | 190692 | - | 0.4584 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6023 | 190800 | 0.7329 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6173 | 191595 | 0.7439 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6323 | 192390 | 0.7605 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6473 | 193185 | 0.7511 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6623 | 193980 | 0.7458 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6773 | 194775 | 0.7508 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.6923 | 195570 | 0.7467 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7073 | 196365 | 0.7463 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7223 | 197160 | 0.7389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7373 | 197955 | 0.772 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7524 | 198750 | 0.7859 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7674 | 199545 | 0.7543 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7824 | 200340 | 0.7635 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.7974 | 201135 | 0.7706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.8124 | 201930 | 0.7748 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.8274 | 202725 | 0.7552 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.8424 | 203520 | 0.7484 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.8574 | 204315 | 0.7535 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.8724 | 205110 | 0.7615 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.8874 | 205905 | 0.7536 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9002 | 206583 | - | 0.4789 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9024 | 206700 | 0.7566 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9175 | 207495 | 0.7747 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9325 | 208290 | 0.7526 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9475 | 209085 | 0.759 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9625 | 209880 | 0.7477 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9775 | 210675 | 0.7632 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 3.9925 | 211470 | 0.7625 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0075 | 212265 | 0.7535 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0225 | 213060 | 0.745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0376 | 213855 | 0.7311 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0526 | 214650 | 0.7327 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0676 | 215445 | 0.7385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0826 | 216240 | 0.7521 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.0976 | 217035 | 0.7579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.1126 | 217830 | 0.7378 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.1276 | 218625 | 0.7641 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.1426 | 219420 | 0.7637 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.1576 | 220215 | 0.7676 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.1726 | 221010 | 0.7789 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.1876 | 221805 | 0.7677 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2003 | 222474 | - | 0.4703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2027 | 222600 | 0.77 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2177 | 223395 | 0.7386 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2327 | 224190 | 0.7432 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2477 | 224985 | 0.7436 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2627 | 225780 | 0.7366 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2777 | 226575 | 0.7254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.2927 | 227370 | 0.7594 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3077 | 228165 | 0.7646 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3227 | 228960 | 0.7524 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3377 | 229755 | 0.7625 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3527 | 230550 | 0.7647 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3678 | 231345 | 0.7425 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3828 | 232140 | 0.7568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.3978 | 232935 | 0.7809 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.4128 | 233730 | 0.7762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.4278 | 234525 | 0.7579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.4428 | 235320 | 0.7625 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.4578 | 236115 | 0.7664 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.4728 | 236910 | 0.7357 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.4878 | 237705 | 0.7316 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5003 | 238365 | - | 0.4811 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5028 | 238500 | 0.7568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5179 | 239295 | 0.7522 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5329 | 240090 | 0.7529 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5479 | 240885 | 0.7468 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5629 | 241680 | 0.7304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5779 | 242475 | 0.749 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.5929 | 243270 | 0.7391 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6079 | 244065 | 0.7483 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6229 | 244860 | 0.7682 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6379 | 245655 | 0.7636 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6529 | 246450 | 0.7705 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6679 | 247245 | 0.7516 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6830 | 248040 | 0.7632 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.6980 | 248835 | 0.7659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.7130 | 249630 | 0.7254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.7280 | 250425 | 0.7163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.7430 | 251220 | 0.7552 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.7580 | 252015 | 0.7654 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.7730 | 252810 | 0.7308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.7880 | 253605 | 0.7513 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
|
| 4.8003 | 254256 | - | 0.4811 | 0.4893 | 0.5825 | 0.5898 | 0.4895 | 0.4883 | 0.7650 | 0.7638 | 0.6590 | 0.6610 | 0.6648 | 0.6683 | 0.5372 | 0.5433 | 0.7195 | 0.7127 | 0.5966 | 0.5987 | 0.5010 | 0.5093 | 0.4117 | 0.4101 | 0.4784 | 0.4759 | 0.4759 | 0.4522 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.10 |
|
- Sentence Transformers: 3.3.0 |
|
- Transformers: 4.46.3 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |