yklymchuk-rztk's picture
Model save
4262673 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:18644575
  - loss:RZTKMatryoshka2dLoss
base_model: intfloat/multilingual-e5-base
widget:
  - source_sentence: 'query: кисточки для макияжа'
    sentences:
      - 'passage: Парасоля компактна складана Airton Z3510 механіка Чорна'
      - 'passage: Корпус FrimeCom LB-081 BL 400W 12cm'
      - 'passage: Кисті для макіяжу Kylie 12 шт набір кистей пензлика 12 шт Білі'
  - source_sentence: 'query: hg средство'
    sentences:
      - 'passage: Відеореєстратор Globex GE-115'
      - 'passage: Плямовивідник для тканин HG Oxi 0.5 кг (324050106)'
      - >-
        passage: Мережевий подовжувач MERLION B530, 10А 220В, 5 розеток, 3,0 м,
        перетин 3х0,75мм, чорний Q30
  - source_sentence: 'query: 471 картридж'
    sentences:
      - 'passage: Картридж Canon CLI-471 XL PIXMA MG5740/MG6840 Grey (0350C001)'
      - 'passage: Ключница Valenta кожаная Синяя (ХК41612)'
      - 'passage: Біговели  Діаметр коліс 12" (30.5 см)'
  - source_sentence: 'query: кольцо'
    sentences:
      - >-
        passage: Сумки SumWin Для кого Для женщин Вид Сумки. Цвет Черный
        Количество грузовых мест 1 Модель сумки Кросс-боди Материал
        Искусственная кожа Страна регистрации бренда Украина
        Страна-производитель товара Китай Тип гарантийного талона Гарантия по
        чеку Форма Круглая Доставка Доставка в магазины ROZETKA
      - >-
        passage: Корпуси Phanteks Форм-фактор материнської плати ATX Тип корпусу
        Fulltower Колір Чорний Кількість внутрішніх відсіків 3.5" 13 теги Круті
        Матеріал Алюміній
      - 'passage: Кольцо с бабочкой "Mini Butterfly", серебро'
  - source_sentence: 'query: сумочка женская'
    sentences:
      - >-
        passage: Сумки Без бренда Для кого Для женщин Цвет Черный Стиль
        Повседневные Модель сумки Кросс-боди Материал Экокожа Страна регистрации
        бренда Украина Страна-производитель товара Китай Количество отделений 3
        Форма Трапеция Застежка Магнит
      - >-
        passage: Пенали Kite Гарантія 14 днів Колір Бірюзовий Стать Для дівчаток
        Матеріал Поліестер Кількість відділень 1 Кількість вантажних місць 1
        Країна реєстрації бренда Німеччина Країна-виробник товару Китай Вага, г
        350 Тип гарантійного талона Гарантія по чеку Особливості З наповненням
        Форма Книжка
      - >-
        passage: Шампунь PROFIStyle Класс косметики Профессиональная Пол Для
        женщин Количество грузовых мест 1 Страна регистрации бренда Украина
        Серия Profistyle Страна-производитель товара Украина Объем 5 л Тип волос
        Все типы волос Назначение Для очищения волос Тип гарантийного талона Без
        гарантийного талона Доставка Доставка в магазины ROZETKA Доставка Готов
        к отправке
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - dot_ndcg@1
  - dot_mrr@1
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-base
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: bm full
          type: bm-full
        metrics:
          - type: dot_accuracy@1
            value: 0.47841472045293704
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6553432413305025
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7331917905166313
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8283793347487615
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.47841472045293704
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4861995753715499
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.4876150035385704
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4910474168435951
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.011351462591853162
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.03449117733770484
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.057669566486942436
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.11452942341940178
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.48926390789530216
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5827980543479477
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.36280520756352586
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core uk title
          type: core-uk-title
        metrics:
          - type: dot_accuracy@1
            value: 0.6303901437371663
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8542094455852156
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9240246406570842
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.973305954825462
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6303901437371663
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.6379192334017795
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.624640657084189
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5196098562628337
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.06432071345934735
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1941943610200646
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3154921649259734
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5135267830369895
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5824689476221301
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7525264007040191
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5641261600874217
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core ru title
          type: core-ru-title
        metrics:
          - type: dot_accuracy@1
            value: 0.6416837782340863
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8562628336755647
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9229979466119097
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9691991786447639
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6416837782340863
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.6471594798083503
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.633264887063655
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5252566735112937
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.0656523606676101
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.19734738384711206
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.32075535697878377
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.518985171764795
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5898234843670869
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7593062481666181
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5728620912840142
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core uk options
          type: core-uk-options
        metrics:
          - type: dot_accuracy@1
            value: 0.4948665297741273
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7464065708418891
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.837782340862423
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9322381930184805
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4948665297741273
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4989733059548255
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.49507186858316227
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.45400410677618075
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04964465358761168
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.15084259771646535
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.24819367614844123
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4471062523959915
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4895423721577878
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6382761318079595
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.49557058138522575
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core ru options
          type: core-ru-options
        metrics:
          - type: dot_accuracy@1
            value: 0.48767967145790553
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7505133470225873
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8367556468172485
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9291581108829569
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.48767967145790553
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4986310746064339
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.4975359342915811
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.45195071868583164
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04851468328413007
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.14950617034051025
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2481739767794847
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.44488472424288944
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.48827111188574646
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6368082037743232
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4951823868475039
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: options uk title
          type: options-uk-title
        metrics:
          - type: dot_accuracy@1
            value: 0.7572383073496659
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9376391982182628
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9665924276169265
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9933184855233853
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7572383073496659
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.7490720118782479
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.711804008908686
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5541202672605791
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.11543915129661232
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.34200363482100676
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5370094518201423
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.7924881972766159
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7650169670738622
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.850054795489094
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7380727317887708
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: options ru title
          type: options-ru-title
        metrics:
          - type: dot_accuracy@1
            value: 0.7706013363028953
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9309576837416481
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9665924276169265
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9933184855233853
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7706013363028953
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.746844840386043
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.712249443207127
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5505567928730514
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.11822576705650203
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3409996400530922
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5359948514736934
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.7883290428947444
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7637672715459831
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8557897620815217
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7395006608870638
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: options uk options
          type: options-uk-options
        metrics:
          - type: dot_accuracy@1
            value: 0.6325167037861915
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.844097995545657
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.910913140311804
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9487750556792873
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6325167037861915
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.6221232368225686
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.602672605790646
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.49643652561247215
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.09247718997162206
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.27593618334152853
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.4409379348688926
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6951361370626404
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6589801178305443
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7480468059532647
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6414571076888178
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: options ru options
          type: options-ru-options
        metrics:
          - type: dot_accuracy@1
            value: 0.6369710467706013
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8374164810690423
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8930957683741648
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9465478841870824
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6369710467706013
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.635486265775798
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.6071269487750557
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4939866369710468
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.09363496562828412
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.2826698419126036
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.44549921743685666
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6956133880966844
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6610343624368801
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7464338742178385
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6451679716029399
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms uk title
          type: rusisms-uk-title
        metrics:
          - type: dot_accuracy@1
            value: 0.6412698412698413
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7904761904761904
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8285714285714286
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8857142857142857
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6412698412698413
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.6634920634920635
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.6552380952380952
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.6234920634920637
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04133075530701777
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1170592846495341
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.17830553909997546
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.31008571089134707
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6647746031552833
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7268543713781809
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5853570509786064
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms ru title
          type: rusisms-ru-title
        metrics:
          - type: dot_accuracy@1
            value: 0.6698412698412698
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7777777777777778
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.834920634920635
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8920634920634921
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6698412698412698
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.6645502645502644
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.6577777777777778
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.626031746031746
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04434422970262397
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.11704562106444193
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.1773543477691105
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.30781876553915866
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6682830160464889
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7408213655832702
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.592275762720651
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms uk options
          type: rusisms-uk-options
        metrics:
          - type: dot_accuracy@1
            value: 0.5079365079365079
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6285714285714286
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7174603174603175
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7904761904761904
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5079365079365079
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5058201058201058
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5161904761904762
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5111111111111111
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.032681042657417864
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.08490359132017175
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.14131766688622155
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.25180769140267506
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5372281406420663
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5902317964222725
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4986827236995346
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms ru options
          type: rusisms-ru-options
        metrics:
          - type: dot_accuracy@1
            value: 0.4984126984126984
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6476190476190476
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7492063492063492
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8063492063492064
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4984126984126984
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5195767195767197
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5276190476190475
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5177777777777778
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03202754604702237
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.08547386088540315
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.14166544702843223
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.25453386918000204
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5433437983757069
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5972423784328544
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5053350497126974
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms corrected uk title
          type: rusisms_corrected-uk-title
        metrics:
          - type: dot_accuracy@1
            value: 0.7120253164556962
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.819620253164557
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.870253164556962
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9113924050632911
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7120253164556962
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.7183544303797469
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.7082278481012658
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.6683544303797468
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04969812837853694
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.12741782983341862
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.19731659021523865
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.3409923887206817
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7194597470114055
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7808808016877635
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6388697195804478
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms corrected ru title
          type: rusisms_corrected-ru-title
        metrics:
          - type: dot_accuracy@1
            value: 0.7088607594936709
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8291139240506329
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.870253164556962
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9113924050632911
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7088607594936709
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.7162447257383966
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.7037974683544304
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.6629746835443039
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04888449873376417
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.12829212684740135
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.19987613332490306
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.3356192325461046
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7127299992462074
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7792708961221617
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6395009156047453
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms corrected uk options
          type: rusisms_corrected-uk-options
        metrics:
          - type: dot_accuracy@1
            value: 0.5537974683544303
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7278481012658228
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7848101265822784
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8544303797468354
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5537974683544303
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5738396624472574
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5759493670886076
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5645569620253166
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.0398666442289475
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.10622990404547561
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.16577310801842357
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.28425407965410443
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5965577106105705
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6513147980711272
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5594863722365065
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: rusisms corrected ru options
          type: rusisms_corrected-ru-options
        metrics:
          - type: dot_accuracy@1
            value: 0.5727848101265823
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7215189873417721
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7848101265822784
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8607594936708861
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5727848101265823
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5822784810126582
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5810126582278481
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.5655063291139241
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.039125841492212286
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.10198185350545384
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.16299351965480724
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.28079825575547895
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5986535833917944
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6613936608398633
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5634230712770681
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core typos uk title
          type: core_typos-uk-title
        metrics:
          - type: dot_accuracy@1
            value: 0.5451745379876797
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7874743326488707
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8490759753593429
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9117043121149897
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5451745379876797
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5492813141683778
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5277207392197125
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4458932238193019
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.055501817487715537
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.16799075803409055
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.26738880088922357
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4420220810379646
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5009599181825904
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6744923568332187
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4756860853091724
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core typos ru title
          type: core_typos-ru-title
        metrics:
          - type: dot_accuracy@1
            value: 0.5677618069815195
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7802874743326489
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8490759753593429
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9075975359342916
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5677618069815195
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.553388090349076
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.535523613963039
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4521560574948666
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.05788962617685893
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.16991013827739276
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2724072401441347
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4493398516770904
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5093051901273817
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6864704540269218
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.48302575127668773
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core typos uk options
          type: core_typos-uk-options
        metrics:
          - type: dot_accuracy@1
            value: 0.42505133470225875
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6478439425051334
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7433264887063655
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8429158110882957
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42505133470225875
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4182067077344285
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.41704312114989733
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.37997946611909655
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04281943186324754
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.12630907755998344
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.20887045080712793
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.37542821461999504
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.41173177598646793
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5581076236107032
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.40947735972105836
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: core typos ru options
          type: core_typos-ru-options
        metrics:
          - type: dot_accuracy@1
            value: 0.42299794661190965
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6509240246406571
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7464065708418891
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8459958932238193
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42299794661190965
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.42231348391512663
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.41581108829568786
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.376694045174538
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04208886721644905
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.12759403691355015
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2076836983626753
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.37292863983662994
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4101083135252108
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5588503471203672
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.40851869049399947
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: 'bm full  matryoshka dim 768  '
          type: bm-full--matryoshka_dim-768--
        metrics:
          - type: dot_accuracy@1
            value: 0.47841472045293704
            name: Dot Accuracy@1
          - type: dot_precision@1
            value: 0.47841472045293704
            name: Dot Precision@1
          - type: dot_recall@1
            value: 0.011351462591853162
            name: Dot Recall@1
          - type: dot_ndcg@1
            value: 0.47841472045293704
            name: Dot Ndcg@1
          - type: dot_mrr@1
            value: 0.47841472045293704
            name: Dot Mrr@1
          - type: dot_map@100
            value: 0.36280520756352586
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: 'bm full  matryoshka dim 512  '
          type: bm-full--matryoshka_dim-512--
        metrics:
          - type: dot_accuracy@1
            value: 0.4759377211606511
            name: Dot Accuracy@1
          - type: dot_precision@1
            value: 0.4759377211606511
            name: Dot Precision@1
          - type: dot_recall@1
            value: 0.0114070381458067
            name: Dot Recall@1
          - type: dot_ndcg@1
            value: 0.4759377211606511
            name: Dot Ndcg@1
          - type: dot_mrr@1
            value: 0.4759377211606511
            name: Dot Mrr@1
          - type: dot_map@100
            value: 0.36005063767775514
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: 'bm full  matryoshka dim 256  '
          type: bm-full--matryoshka_dim-256--
        metrics:
          - type: dot_accuracy@1
            value: 0.4759377211606511
            name: Dot Accuracy@1
          - type: dot_precision@1
            value: 0.4759377211606511
            name: Dot Precision@1
          - type: dot_recall@1
            value: 0.011372889899440053
            name: Dot Recall@1
          - type: dot_ndcg@1
            value: 0.4759377211606511
            name: Dot Ndcg@1
          - type: dot_mrr@1
            value: 0.4759377211606511
            name: Dot Mrr@1
          - type: dot_map@100
            value: 0.3488370117998616
            name: Dot Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: 'bm full  matryoshka dim 128  '
          type: bm-full--matryoshka_dim-128--
        metrics:
          - type: dot_accuracy@1
            value: 0.45222929936305734
            name: Dot Accuracy@1
          - type: dot_precision@1
            value: 0.45222929936305734
            name: Dot Precision@1
          - type: dot_recall@1
            value: 0.010638577599638174
            name: Dot Recall@1
          - type: dot_ndcg@1
            value: 0.45222929936305734
            name: Dot Ndcg@1
          - type: dot_mrr@1
            value: 0.45222929936305734
            name: Dot Mrr@1
          - type: dot_map@100
            value: 0.32466551163194907
            name: Dot Map@100

SentenceTransformer based on intfloat/multilingual-e5-base

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on the rozetka_positive_pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
    • rozetka_positive_pairs

Model Sources

Full Model Architecture

RZTKSentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue")
# Run inference
sentences = [
    'query: сумочка женская',
    'passage: Сумки Без бренда Для кого Для женщин Цвет Черный Стиль Повседневные Модель сумки Кросс-боди Материал Экокожа Страна регистрации бренда Украина Страна-производитель товара Китай Количество отделений 3 Форма Трапеция Застежка Магнит',
    'passage: Пенали Kite Гарантія 14 днів Колір Бірюзовий Стать Для дівчаток Матеріал Поліестер Кількість відділень 1 Кількість вантажних місць 1 Країна реєстрації бренда Німеччина Країна-виробник товару Китай Вага, г 350 Тип гарантійного талона Гарантія по чеку Особливості З наповненням Форма Книжка',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: bm-full, core-uk-title, core-ru-title, core-uk-options, core-ru-options, options-uk-title, options-ru-title, options-uk-options, options-ru-options, rusisms-uk-title, rusisms-ru-title, rusisms-uk-options, rusisms-ru-options, rusisms_corrected-uk-title, rusisms_corrected-ru-title, rusisms_corrected-uk-options, rusisms_corrected-ru-options, core_typos-uk-title, core_typos-ru-title, core_typos-uk-options and core_typos-ru-options
  • Evaluated with InformationRetrievalEvaluator
Metric bm-full core-uk-title core-ru-title core-uk-options core-ru-options options-uk-title options-ru-title options-uk-options options-ru-options rusisms-uk-title rusisms-ru-title rusisms-uk-options rusisms-ru-options rusisms_corrected-uk-title rusisms_corrected-ru-title rusisms_corrected-uk-options rusisms_corrected-ru-options core_typos-uk-title core_typos-ru-title core_typos-uk-options core_typos-ru-options
dot_accuracy@1 0.4784 0.6304 0.6417 0.4949 0.4877 0.7572 0.7706 0.6325 0.637 0.6413 0.6698 0.5079 0.4984 0.712 0.7089 0.5538 0.5728 0.5452 0.5678 0.4251 0.423
dot_accuracy@3 0.6553 0.8542 0.8563 0.7464 0.7505 0.9376 0.931 0.8441 0.8374 0.7905 0.7778 0.6286 0.6476 0.8196 0.8291 0.7278 0.7215 0.7875 0.7803 0.6478 0.6509
dot_accuracy@5 0.7332 0.924 0.923 0.8378 0.8368 0.9666 0.9666 0.9109 0.8931 0.8286 0.8349 0.7175 0.7492 0.8703 0.8703 0.7848 0.7848 0.8491 0.8491 0.7433 0.7464
dot_accuracy@10 0.8284 0.9733 0.9692 0.9322 0.9292 0.9933 0.9933 0.9488 0.9465 0.8857 0.8921 0.7905 0.8063 0.9114 0.9114 0.8544 0.8608 0.9117 0.9076 0.8429 0.846
dot_precision@1 0.4784 0.6304 0.6417 0.4949 0.4877 0.7572 0.7706 0.6325 0.637 0.6413 0.6698 0.5079 0.4984 0.712 0.7089 0.5538 0.5728 0.5452 0.5678 0.4251 0.423
dot_precision@3 0.4862 0.6379 0.6472 0.499 0.4986 0.7491 0.7468 0.6221 0.6355 0.6635 0.6646 0.5058 0.5196 0.7184 0.7162 0.5738 0.5823 0.5493 0.5534 0.4182 0.4223
dot_precision@5 0.4876 0.6246 0.6333 0.4951 0.4975 0.7118 0.7122 0.6027 0.6071 0.6552 0.6578 0.5162 0.5276 0.7082 0.7038 0.5759 0.581 0.5277 0.5355 0.417 0.4158
dot_precision@10 0.491 0.5196 0.5253 0.454 0.452 0.5541 0.5506 0.4964 0.494 0.6235 0.626 0.5111 0.5178 0.6684 0.663 0.5646 0.5655 0.4459 0.4522 0.38 0.3767
dot_recall@1 0.0114 0.0643 0.0657 0.0496 0.0485 0.1154 0.1182 0.0925 0.0936 0.0413 0.0443 0.0327 0.032 0.0497 0.0489 0.0399 0.0391 0.0555 0.0579 0.0428 0.0421
dot_recall@3 0.0345 0.1942 0.1973 0.1508 0.1495 0.342 0.341 0.2759 0.2827 0.1171 0.117 0.0849 0.0855 0.1274 0.1283 0.1062 0.102 0.168 0.1699 0.1263 0.1276
dot_recall@5 0.0577 0.3155 0.3208 0.2482 0.2482 0.537 0.536 0.4409 0.4455 0.1783 0.1774 0.1413 0.1417 0.1973 0.1999 0.1658 0.163 0.2674 0.2724 0.2089 0.2077
dot_recall@10 0.1145 0.5135 0.519 0.4471 0.4449 0.7925 0.7883 0.6951 0.6956 0.3101 0.3078 0.2518 0.2545 0.341 0.3356 0.2843 0.2808 0.442 0.4493 0.3754 0.3729
dot_ndcg@10 0.4893 0.5825 0.5898 0.4895 0.4883 0.765 0.7638 0.659 0.661 0.6648 0.6683 0.5372 0.5433 0.7195 0.7127 0.5966 0.5987 0.501 0.5093 0.4117 0.4101
dot_mrr@10 0.5828 0.7525 0.7593 0.6383 0.6368 0.8501 0.8558 0.748 0.7464 0.7269 0.7408 0.5902 0.5972 0.7809 0.7793 0.6513 0.6614 0.6745 0.6865 0.5581 0.5589
dot_map@100 0.3628 0.5641 0.5729 0.4956 0.4952 0.7381 0.7395 0.6415 0.6452 0.5854 0.5923 0.4987 0.5053 0.6389 0.6395 0.5595 0.5634 0.4757 0.483 0.4095 0.4085

Information Retrieval

  • Datasets: bm-full--matryoshka_dim-768--, bm-full--matryoshka_dim-512--, bm-full--matryoshka_dim-256-- and bm-full--matryoshka_dim-128--
  • Evaluated with InformationRetrievalEvaluator
Metric bm-full--matryoshka_dim-768-- bm-full--matryoshka_dim-512-- bm-full--matryoshka_dim-256-- bm-full--matryoshka_dim-128--
dot_accuracy@1 0.4784 0.4759 0.4759 0.4522
dot_precision@1 0.4784 0.4759 0.4759 0.4522
dot_recall@1 0.0114 0.0114 0.0114 0.0106
dot_ndcg@1 0.4784 0.4759 0.4759 0.4522
dot_mrr@1 0.4784 0.4759 0.4759 0.4522
dot_map@100 0.3628 0.3601 0.3488 0.3247

Training Details

Training Dataset

rozetka_positive_pairs

  • Dataset: rozetka_positive_pairs
  • Size: 18,644,575 training samples
  • Columns: query and text
  • Approximate statistics based on the first 1000 samples:
    query text
    type string string
    details
    • min: 6 tokens
    • mean: 12.04 tokens
    • max: 30 tokens
    • min: 8 tokens
    • mean: 55.98 tokens
    • max: 512 tokens
  • Samples:
    query text
    query: xsiomi 9c скло passage: Защитные стекла Назначение Для мобильных телефонов Цвет Черный Теги Теги Наличие рамки C рамкой Форм-фактор Плоское Клеевой слой По всей поверхности
    query: xsiomi 9c скло passage: Захисне скло Glass Full Glue для Xiaomi Redmi 9A/9C/10A (Чорний)
    query: xsiomi 9c скло passage: Захисне скло Призначення Для мобільних телефонів Колір Чорний Теги Теги Наявність рамки З рамкою Форм-фактор Плоске Клейовий шар По всій поверхні
  • Loss: sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss with these parameters:
    {
        "loss": "RZTKMultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Evaluation Dataset

rozetka_positive_pairs

  • Dataset: rozetka_positive_pairs
  • Size: 202,564 evaluation samples
  • Columns: query and text
  • Approximate statistics based on the first 1000 samples:
    query text
    type string string
    details
    • min: 6 tokens
    • mean: 8.57 tokens
    • max: 17 tokens
    • min: 8 tokens
    • mean: 53.17 tokens
    • max: 512 tokens
  • Samples:
    query text
    query: создаем нейронную сеть passage: Створюємо нейронну мережу
    query: создаем нейронную сеть passage: Научная и техническая литература Переплет Мягкий
    query: создаем нейронную сеть passage: Создаем нейронную сеть (1666498)
  • Loss: sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss with these parameters:
    {
        "loss": "RZTKMultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 88
  • per_device_eval_batch_size: 88
  • learning_rate: 2e-05
  • num_train_epochs: 5.0
  • warmup_ratio: 0.1
  • bf16: True
  • bf16_full_eval: True
  • tf32: True
  • dataloader_num_workers: 8
  • load_best_model_at_end: True
  • optim: adafactor
  • push_to_hub: True
  • hub_model_id: yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue
  • hub_private_repo: True
  • prompts: {'query': 'query: ', 'text': 'passage: '}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 88
  • per_device_eval_batch_size: 88
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: True
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adafactor
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue
  • hub_strategy: every_save
  • hub_private_repo: True
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: {'query': 'query: ', 'text': 'passage: '}
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • ddp_static_graph: False
  • ddp_comm_hook: bf16
  • gradient_as_bucket_view: False
  • num_proc: 30

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss bm-full_dot_ndcg@10 core-uk-title_dot_ndcg@10 core-ru-title_dot_ndcg@10 core-uk-options_dot_ndcg@10 core-ru-options_dot_ndcg@10 options-uk-title_dot_ndcg@10 options-ru-title_dot_ndcg@10 options-uk-options_dot_ndcg@10 options-ru-options_dot_ndcg@10 rusisms-uk-title_dot_ndcg@10 rusisms-ru-title_dot_ndcg@10 rusisms-uk-options_dot_ndcg@10 rusisms-ru-options_dot_ndcg@10 rusisms_corrected-uk-title_dot_ndcg@10 rusisms_corrected-ru-title_dot_ndcg@10 rusisms_corrected-uk-options_dot_ndcg@10 rusisms_corrected-ru-options_dot_ndcg@10 core_typos-uk-title_dot_ndcg@10 core_typos-ru-title_dot_ndcg@10 core_typos-uk-options_dot_ndcg@10 core_typos-ru-options_dot_ndcg@10 bm-full--matryoshka_dim-768--_dot_ndcg@1 bm-full--matryoshka_dim-512--_dot_ndcg@1 bm-full--matryoshka_dim-256--_dot_ndcg@1 bm-full--matryoshka_dim-128--_dot_ndcg@1
2.7017 143100 0.7397 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7167 143895 0.7745 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7317 144690 0.8018 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7467 145485 0.7712 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7617 146280 0.7634 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7767 147075 0.7801 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7917 147870 0.7608 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8067 148665 0.7886 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8218 149460 0.7534 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8368 150255 0.7848 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8518 151050 0.7657 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8668 151845 0.7943 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8818 152640 0.7683 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8968 153435 0.7555 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9118 154230 0.7575 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9268 155025 0.7253 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9418 155820 0.7538 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9568 156615 0.7708 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9719 157410 0.7582 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9869 158205 0.7987 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0002 158910 - 0.4537 - - - - - - - - - - - - - - - - - - - - - - - - -
3.0019 159000 0.7604 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0169 159795 0.7485 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0319 160590 0.7761 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0469 161385 0.7606 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0619 162180 0.7752 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0769 162975 0.7624 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0919 163770 0.7764 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1070 164565 0.7714 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1220 165360 0.7916 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1370 166155 0.7484 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1520 166950 0.7751 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1670 167745 0.7634 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1820 168540 0.7549 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1970 169335 0.7538 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2120 170130 0.7545 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2270 170925 0.7738 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2420 171720 0.7513 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2570 172515 0.7479 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2721 173310 0.751 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2871 174105 0.7583 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3002 174801 - 0.4436 - - - - - - - - - - - - - - - - - - - - - - - - -
3.3021 174900 0.7593 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3171 175695 0.7346 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3321 176490 0.759 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3471 177285 0.7639 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3621 178080 0.7699 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3771 178875 0.7463 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3921 179670 0.7659 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4071 180465 0.7811 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4221 181260 0.7658 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4372 182055 0.7529 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4522 182850 0.7448 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4672 183645 0.7308 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4822 184440 0.7567 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4972 185235 0.7634 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5122 186030 0.7619 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5272 186825 0.7184 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5422 187620 0.7555 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5572 188415 0.7801 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5722 189210 0.7764 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5873 190005 0.7659 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6002 190692 - 0.4584 - - - - - - - - - - - - - - - - - - - - - - - - -
3.6023 190800 0.7329 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6173 191595 0.7439 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6323 192390 0.7605 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6473 193185 0.7511 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6623 193980 0.7458 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6773 194775 0.7508 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6923 195570 0.7467 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7073 196365 0.7463 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7223 197160 0.7389 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7373 197955 0.772 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7524 198750 0.7859 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7674 199545 0.7543 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7824 200340 0.7635 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7974 201135 0.7706 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8124 201930 0.7748 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8274 202725 0.7552 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8424 203520 0.7484 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8574 204315 0.7535 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8724 205110 0.7615 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8874 205905 0.7536 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9002 206583 - 0.4789 - - - - - - - - - - - - - - - - - - - - - - - - -
3.9024 206700 0.7566 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9175 207495 0.7747 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9325 208290 0.7526 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9475 209085 0.759 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9625 209880 0.7477 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9775 210675 0.7632 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9925 211470 0.7625 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0075 212265 0.7535 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0225 213060 0.745 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0376 213855 0.7311 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0526 214650 0.7327 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0676 215445 0.7385 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0826 216240 0.7521 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0976 217035 0.7579 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1126 217830 0.7378 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1276 218625 0.7641 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1426 219420 0.7637 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1576 220215 0.7676 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1726 221010 0.7789 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1876 221805 0.7677 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2003 222474 - 0.4703 - - - - - - - - - - - - - - - - - - - - - - - - -
4.2027 222600 0.77 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2177 223395 0.7386 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2327 224190 0.7432 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2477 224985 0.7436 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2627 225780 0.7366 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2777 226575 0.7254 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2927 227370 0.7594 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3077 228165 0.7646 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3227 228960 0.7524 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3377 229755 0.7625 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3527 230550 0.7647 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3678 231345 0.7425 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3828 232140 0.7568 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3978 232935 0.7809 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4128 233730 0.7762 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4278 234525 0.7579 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4428 235320 0.7625 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4578 236115 0.7664 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4728 236910 0.7357 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4878 237705 0.7316 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5003 238365 - 0.4811 - - - - - - - - - - - - - - - - - - - - - - - - -
4.5028 238500 0.7568 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5179 239295 0.7522 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5329 240090 0.7529 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5479 240885 0.7468 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5629 241680 0.7304 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5779 242475 0.749 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5929 243270 0.7391 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6079 244065 0.7483 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6229 244860 0.7682 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6379 245655 0.7636 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6529 246450 0.7705 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6679 247245 0.7516 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6830 248040 0.7632 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6980 248835 0.7659 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7130 249630 0.7254 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7280 250425 0.7163 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7430 251220 0.7552 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7580 252015 0.7654 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7730 252810 0.7308 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7880 253605 0.7513 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8003 254256 - 0.4811 0.4893 0.5825 0.5898 0.4895 0.4883 0.7650 0.7638 0.6590 0.6610 0.6648 0.6683 0.5372 0.5433 0.7195 0.7127 0.5966 0.5987 0.5010 0.5093 0.4117 0.4101 0.4784 0.4759 0.4759 0.4522
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.3.0
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}