|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from rotary_embedding_torch import RotaryEmbedding |
|
from torch.jit import Final |
|
import numpy as np |
|
import math |
|
from timm.models.vision_transformer import Attention, Mlp |
|
from timm.models.vision_transformer_relpos import RelPosAttention |
|
from timm.layers import Format, nchw_to, to_2tuple, _assert, RelPosBias, use_fused_attn |
|
from typing import Callable, List, Optional, Tuple, Union |
|
from functools import partial |
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
embeddings = self.embedding_table(labels) |
|
return embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" 2D Image to Patch Embedding |
|
""" |
|
output_fmt: Format |
|
|
|
def __init__( |
|
self, |
|
img_size: Optional[Union[int, tuple, list]] = 224, |
|
patch_size: Union[int, tuple, list] = 16, |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
norm_layer: Optional[Callable] = None, |
|
flatten: bool = True, |
|
output_fmt: Optional[str] = None, |
|
bias: bool = True, |
|
strict_img_size: bool = True, |
|
): |
|
super().__init__() |
|
self.patch_size = to_2tuple(patch_size) |
|
if img_size is not None: |
|
if isinstance(img_size, int): |
|
self.img_size = to_2tuple(img_size) |
|
elif len(img_size) == 1: |
|
self.img_size = to_2tuple(img_size[0]) |
|
else: |
|
self.img_size = img_size |
|
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
else: |
|
self.img_size = None |
|
self.grid_size = None |
|
self.num_patches = None |
|
|
|
if output_fmt is not None: |
|
self.flatten = False |
|
self.output_fmt = Format(output_fmt) |
|
else: |
|
|
|
self.flatten = flatten |
|
self.output_fmt = Format.NCHW |
|
self.strict_img_size = strict_img_size |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
if self.img_size is not None: |
|
if self.strict_img_size: |
|
_assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") |
|
_assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") |
|
else: |
|
_assert( |
|
H % self.patch_size[0] == 0, |
|
f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." |
|
) |
|
_assert( |
|
W % self.patch_size[1] == 0, |
|
f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." |
|
) |
|
|
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
elif self.output_fmt != Format.NCHW: |
|
x = nchw_to(x, self.output_fmt) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class FlattenNorm(nn.Module): |
|
""" Flatten 2D Image to a vector |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: Optional[Union[int, tuple, list]] = 224, |
|
embed_dim: int = 768, |
|
norm_layer: Optional[Callable] = None, |
|
): |
|
super().__init__() |
|
self.num_patches = max(img_size) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
self.MLP = nn.Sequential(nn.Linear(64, 256), nn.SiLU(), nn.Linear(256, embed_dim)) |
|
|
|
def forward(self, x): |
|
x = x.permute(0, 2, 1, 3).flatten(2) |
|
x = self.MLP(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class FlattenPatchify1D(nn.Module): |
|
""" Flatten 2D Image to a vector with pitch per token |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 4, |
|
img_size: Optional[Union[int, tuple, list]] = 224, |
|
embed_dim: int = 768, |
|
patch_size: int = 8, |
|
norm_layer: Optional[Callable] = None, |
|
): |
|
super().__init__() |
|
|
|
self.num_patches = img_size[0] * img_size[1] // patch_size |
|
self.patch_size = patch_size |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
self.MLP = nn.Sequential(nn.Linear(in_channels * patch_size, 256), nn.SiLU(), nn.Linear(256, embed_dim)) |
|
|
|
def forward(self, x): |
|
x = x.permute(0, 2, 3, 1) |
|
b, n_time, n_pitch, c = x.shape |
|
num_patches = n_time * n_pitch // self.patch_size |
|
|
|
x = x.reshape(b, num_patches, -1) |
|
x = self.MLP(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
class RotaryAttention(nn.Module): |
|
fused_attn: Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_norm=False, |
|
attn_drop=0., |
|
proj_drop=0., |
|
norm_layer=nn.LayerNorm, |
|
rotary_emb=None, |
|
): |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
self.rotary_emb = rotary_emb |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
if self.rotary_emb is not None: |
|
q = self.rotary_emb.rotate_queries_or_keys(q) |
|
k = self.rotary_emb.rotate_queries_or_keys(k) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
q, k, v, |
|
dropout_p=self.attn_drop.p, |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class DiTBlock(nn.Module): |
|
""" |
|
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. |
|
""" |
|
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) |
|
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 6 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) |
|
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) |
|
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) |
|
return x |
|
|
|
|
|
class DiTBlockRotary(nn.Module): |
|
""" |
|
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning & rotary attention. |
|
""" |
|
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, rotary_emb=None, **block_kwargs): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.attn = RotaryAttention(hidden_size, num_heads=num_heads, qkv_bias=True, rotary_emb=rotary_emb, **block_kwargs) |
|
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 6 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) |
|
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) |
|
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) |
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of DiT. |
|
""" |
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class FinalLayerPatch1D(nn.Module): |
|
""" |
|
The final layer of DiT with 1d Patchify. |
|
""" |
|
def __init__(self, hidden_size, out_channels, patch_size_1d=16): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size_1d*out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DiT(nn.Module): |
|
""" |
|
Diffusion model with a Transformer backbone. |
|
""" |
|
def __init__( |
|
self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=3, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
class_dropout_prob=0.1, |
|
num_classes=9, |
|
learn_sigma=True, |
|
patchify=True, |
|
): |
|
super().__init__() |
|
self.learn_sigma = learn_sigma |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.input_size = input_size |
|
self.patchify = patchify |
|
|
|
if patchify: |
|
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) |
|
else: |
|
self.x_embedder = FlattenNorm(input_size, hidden_size) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.num_classes = num_classes |
|
if self.num_classes: |
|
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) |
|
num_patches = self.x_embedder.num_patches |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False) |
|
|
|
self.blocks = nn.ModuleList([ |
|
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) |
|
]) |
|
if patchify: |
|
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) |
|
else: |
|
self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
|
|
if self.patchify: |
|
if isinstance(self.input_size, int) or len(self.input_size) == 1: |
|
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5)) |
|
else: |
|
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1]) |
|
else: |
|
|
|
pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1], |
|
np.arange(self.x_embedder.num_patches, dtype=np.float32)) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
if self.patchify: |
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
nn.init.constant_(self.x_embedder.proj.bias, 0) |
|
|
|
|
|
if self.num_classes: |
|
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) |
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
def unpatchify(self, x): |
|
""" |
|
x: (N, T, patch_size**2 * C) |
|
imgs: (N, H, W, C) |
|
""" |
|
c = self.out_channels |
|
p = self.x_embedder.patch_size[0] |
|
if isinstance(self.input_size, int) or len(self.input_size) == 1: |
|
h = w = int(x.shape[1] ** 0.5) |
|
assert h * w == x.shape[1] |
|
else: |
|
h = self.input_size[0] // self.patch_size |
|
w = self.input_size[1] // self.patch_size |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) |
|
x = torch.einsum('nhwpqc->nchpwq', x) |
|
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) |
|
return imgs |
|
|
|
def unflatten(self, x): |
|
c = self.out_channels |
|
x = x.reshape(shape=(x.shape[0], x.shape[1], c, -1)) |
|
imgs = x.permute(0, 2, 1, 3) |
|
return imgs |
|
|
|
def forward(self, x, t, y=None): |
|
""" |
|
Forward pass of DiT. |
|
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (N,) tensor of diffusion timesteps |
|
y: (N,) tensor of class labels |
|
""" |
|
x = self.x_embedder(x) + self.pos_embed |
|
c = self.t_embedder(t) |
|
if self.num_classes and y is not None: |
|
y = self.y_embedder(y, self.training) |
|
c = c + y |
|
for block in self.blocks: |
|
x = block(x, c) |
|
x = self.final_layer(x, c) |
|
if self.patchify: |
|
x = self.unpatchify(x) |
|
else: |
|
x = self.unflatten(x) |
|
return x |
|
|
|
def forward_with_cfg(self, x, t, y, cfg_scale): |
|
""" |
|
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. |
|
""" |
|
|
|
half = x[: len(x) // 2] |
|
combined = torch.cat([half, half], dim=0) |
|
model_out = self.forward(combined, t, y) |
|
|
|
|
|
|
|
|
|
eps, rest = model_out[:, :3], model_out[:, 3:] |
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) |
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) |
|
eps = torch.cat([half_eps, half_eps], dim=0) |
|
return torch.cat([eps, rest], dim=1) |
|
|
|
|
|
class DiTRotary(nn.Module): |
|
""" |
|
Diffusion model with a Transformer backbone, with rotary position embedding. |
|
Use 1D position encoding, patchify is set to False |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size=32, |
|
patch_size=8, |
|
in_channels=3, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
class_dropout_prob=0.1, |
|
num_classes=9, |
|
learn_sigma=True, |
|
): |
|
super().__init__() |
|
self.learn_sigma = learn_sigma |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.input_size = input_size |
|
|
|
self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.num_classes = num_classes |
|
if self.num_classes: |
|
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) |
|
|
|
rotary_dim = int(hidden_size // num_heads * 0.5) |
|
self.rotary_emb = RotaryEmbedding(rotary_dim) |
|
self.blocks = nn.ModuleList([ |
|
DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth) |
|
]) |
|
self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size_1d=self.patch_size) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
if self.num_classes: |
|
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) |
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
def unpatchify(self, x): |
|
""" |
|
x: (N, T, img_size[1] / patch_size * C) |
|
imgs: (N, H, W, C) |
|
""" |
|
|
|
x = x.reshape(shape=(x.shape[0], -1, self.input_size[1], self.out_channels)) |
|
imgs = x.permute(0, 3, 1, 2) |
|
return imgs |
|
|
|
def forward(self, x, t, y=None): |
|
""" |
|
Forward pass of DiT. |
|
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (N,) tensor of diffusion timesteps |
|
y: (N,) tensor of class labels |
|
""" |
|
x = self.x_embedder(x) |
|
c = self.t_embedder(t) |
|
if self.num_classes and y is not None: |
|
y = self.y_embedder(y, self.training) |
|
c = c + y |
|
for block in self.blocks: |
|
x = block(x, c) |
|
x = self.final_layer(x, c) |
|
x = self.unpatchify(x) |
|
return x |
|
|
|
|
|
class DiT_classifier(nn.Module): |
|
""" |
|
Classifier used in classifier guidance. |
|
""" |
|
def __init__( |
|
self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=3, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
num_classes=9, |
|
patchify=True, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.input_size = input_size |
|
self.patchify = patchify |
|
|
|
if patchify: |
|
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) |
|
else: |
|
self.x_embedder = FlattenNorm(input_size, hidden_size) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.num_classes = num_classes |
|
num_patches = self.x_embedder.num_patches |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False) |
|
|
|
self.blocks = nn.ModuleList([ |
|
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) |
|
]) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True) |
|
self.norm = nn.LayerNorm(hidden_size) |
|
self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4), |
|
nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes)) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
if self.patchify: |
|
if isinstance(self.input_size, int) or len(self.input_size) == 1: |
|
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5)) |
|
else: |
|
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1]) |
|
else: |
|
|
|
pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1], |
|
np.arange(self.x_embedder.num_patches, dtype=np.float32)) |
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
nn.init.normal_(self.cls_token, std=1e-6) |
|
|
|
|
|
if self.patchify: |
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
nn.init.constant_(self.x_embedder.proj.bias, 0) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
def forward(self, x, t): |
|
""" |
|
Forward pass of DiT. |
|
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (N,) tensor of diffusion timesteps |
|
y: (N,) tensor of class labels |
|
""" |
|
x = self.x_embedder(x) + self.pos_embed |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
c = self.t_embedder(t) |
|
for block in self.blocks: |
|
x = block(x, c) |
|
x = x[:, 0, :] |
|
x = self.norm(x) |
|
x = self.classifier_head(x) |
|
return x |
|
|
|
|
|
class DiTRotaryClassifier(nn.Module): |
|
""" |
|
Diffusion model with a Transformer backbone, with rotary position embedding. |
|
Use 1D position encoding, patchify is set to False |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size=32, |
|
patch_size=8, |
|
in_channels=3, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
num_classes=9, |
|
chord=False, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.input_size = input_size |
|
self.chord = chord |
|
self.hidden_size = hidden_size |
|
|
|
self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
self.num_classes = num_classes |
|
|
|
rotary_dim = int(hidden_size // num_heads * 0.5) |
|
self.rotary_emb = RotaryEmbedding(rotary_dim) |
|
self.blocks = nn.ModuleList([ |
|
DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth) |
|
]) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True) |
|
self.norm = nn.LayerNorm(hidden_size) |
|
self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4), |
|
nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes)) |
|
if self.chord: |
|
self.norm_key = nn.LayerNorm(hidden_size) |
|
|
|
self.classifier_head_key = nn.Sequential(nn.Linear(hidden_size, hidden_size//4), |
|
nn.SiLU(), nn.Linear(hidden_size//4, 25)) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
nn.init.normal_(self.cls_token, std=1e-6) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
def forward(self, x, t, y=None): |
|
""" |
|
Forward pass of DiT. |
|
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (N,) tensor of diffusion timesteps |
|
y: (N,) tensor of class labels |
|
""" |
|
if self.chord: |
|
n_token = x.shape[2] // x.shape[3] |
|
x = self.x_embedder(x) |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
c = self.t_embedder(t) |
|
for block in self.blocks: |
|
x = block(x, c) |
|
if self.chord: |
|
x_key = x[:, 0, :] |
|
x_key = self.norm_key(x_key) |
|
key = self.classifier_head_key(x_key) |
|
x_chord = x[:, 1:, :] |
|
x_chord = x_chord.reshape(shape=[x.shape[0], n_token, -1, self.hidden_size]) |
|
x_chord = x_chord.mean(dim=-2) |
|
x_chord = self.norm(x_chord) |
|
chord = self.classifier_head(x_chord) |
|
return key, chord |
|
else: |
|
x = x[:, 0, :] |
|
x = self.norm(x) |
|
x = self.classifier_head(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False, extra_tokens=0): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size_h, dtype=np.float32) |
|
grid_w = np.arange(grid_size_w, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token and extra_tokens > 0: |
|
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
|
|
|
|
|
|
|
|
def DiT_XL_2(**kwargs): |
|
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) |
|
|
|
def DiT_XL_4(**kwargs): |
|
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) |
|
|
|
def DiTRotary_XL_16(**kwargs): |
|
return DiTRotary(depth=28, hidden_size=1152, patch_size=16, num_heads=16, **kwargs) |
|
|
|
def DiTRotary_XL_8(**kwargs): |
|
return DiTRotary(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) |
|
|
|
def DiT_XL_8(**kwargs): |
|
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) |
|
|
|
def DiT_L_2(**kwargs): |
|
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) |
|
|
|
def DiT_L_4(**kwargs): |
|
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) |
|
|
|
def DiT_L_8(**kwargs): |
|
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) |
|
|
|
def DiT_B_2(**kwargs): |
|
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) |
|
|
|
def DiT_B_4(**kwargs): |
|
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) |
|
|
|
def DiTRotary_B_16(**kwargs): |
|
return DiTRotary(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs) |
|
|
|
def DiTRotary_B_8(**kwargs): |
|
return DiTRotary(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) |
|
|
|
def DiT_B_8(**kwargs): |
|
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) |
|
|
|
def DiT_B_4_classifier(**kwargs): |
|
return DiT_classifier(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) |
|
|
|
def DiT_B_8_classifier(**kwargs): |
|
return DiT_classifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) |
|
|
|
def DiTRotary_B_8_classifier(**kwargs): |
|
return DiTRotaryClassifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) |
|
|
|
def DiT_S_2(**kwargs): |
|
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) |
|
|
|
def DiT_S_2_classifier(**kwargs): |
|
return DiT_classifier(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) |
|
|
|
def DiTRotary_S_8_classifier(**kwargs): |
|
return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) |
|
|
|
def DiTRotary_S_8_chord_classifier(**kwargs): |
|
return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, chord=True, **kwargs) |
|
|
|
def DiT_XS_2_classifier(**kwargs): |
|
return DiT_classifier(depth=4, hidden_size=384, patch_size=2, num_heads=6, **kwargs) |
|
|
|
def DiTRotary_XS_8_classifier(**kwargs): |
|
return DiTRotaryClassifier(depth=4, hidden_size=384, patch_size=8, num_heads=6, **kwargs) |
|
|
|
def DiT_S_4(**kwargs): |
|
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) |
|
|
|
def DiT_S_4_classifier(**kwargs): |
|
return DiT_classifier(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) |
|
|
|
def DiT_S_8(**kwargs): |
|
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) |
|
|
|
|
|
DiT_models = { |
|
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8, |
|
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8, |
|
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8, |
|
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8, |
|
'DiTRotary_B_16': DiTRotary_B_16, 'DiTRotary_B_8': DiTRotary_B_8, |
|
'DiTRotary_XL_16': DiTRotary_XL_16, 'DiTRotary_XL_8': DiTRotary_XL_8, |
|
'DiT-B/4-cls': DiT_B_4_classifier, 'DiT-B/8-cls': DiT_B_8_classifier, |
|
'DiT-S/4-cls': DiT_S_4_classifier, 'DiT-S/2-cls': DiT_S_2_classifier, |
|
'DiT-XS/2-cls': DiT_XS_2_classifier, |
|
'DiTRotary-XS/8-cls': DiTRotary_XS_8_classifier, |
|
'DiTRotary-S/8-cls': DiTRotary_S_8_classifier, |
|
'DiTRotary-S/8-chord-cls': DiTRotary_S_8_chord_classifier, |
|
'DiTRotary-B/8-cls': DiTRotary_B_8_classifier, |
|
} |
|
|