yjhuangcd
First commit
9965bf6
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from rotary_embedding_torch import RotaryEmbedding
from torch.jit import Final
import numpy as np
import math
from timm.models.vision_transformer import Attention, Mlp
from timm.models.vision_transformer_relpos import RelPosAttention
from timm.layers import Format, nchw_to, to_2tuple, _assert, RelPosBias, use_fused_attn
from typing import Callable, List, Optional, Tuple, Union
from functools import partial
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Embedding Layers for Patches that Support H != W #
#################################################################################
class PatchEmbed(nn.Module):
""" 2D Image to Patch Embedding
"""
output_fmt: Format
def __init__(
self,
img_size: Optional[Union[int, tuple, list]] = 224,
patch_size: Union[int, tuple, list] = 16,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: Optional[Callable] = None,
flatten: bool = True,
output_fmt: Optional[str] = None,
bias: bool = True,
strict_img_size: bool = True,
):
super().__init__()
self.patch_size = to_2tuple(patch_size)
if img_size is not None:
if isinstance(img_size, int):
self.img_size = to_2tuple(img_size)
elif len(img_size) == 1:
self.img_size = to_2tuple(img_size[0])
else:
self.img_size = img_size
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
self.num_patches = self.grid_size[0] * self.grid_size[1]
else:
self.img_size = None
self.grid_size = None
self.num_patches = None
if output_fmt is not None:
self.flatten = False
self.output_fmt = Format(output_fmt)
else:
# flatten spatial dim and transpose to channels last, kept for bwd compat
self.flatten = flatten
self.output_fmt = Format.NCHW
self.strict_img_size = strict_img_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
if self.img_size is not None:
if self.strict_img_size:
_assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
_assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).")
else:
_assert(
H % self.patch_size[0] == 0,
f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
)
_assert(
W % self.patch_size[1] == 0,
f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
)
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
elif self.output_fmt != Format.NCHW:
x = nchw_to(x, self.output_fmt)
x = self.norm(x)
return x
class FlattenNorm(nn.Module):
""" Flatten 2D Image to a vector
"""
def __init__(
self,
img_size: Optional[Union[int, tuple, list]] = 224,
embed_dim: int = 768,
norm_layer: Optional[Callable] = None,
):
super().__init__()
self.num_patches = max(img_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
# todo: hard code 64 and hidden_dim for now
self.MLP = nn.Sequential(nn.Linear(64, 256), nn.SiLU(), nn.Linear(256, embed_dim))
def forward(self, x):
x = x.permute(0, 2, 1, 3).flatten(2) # B x 4 x 128 x 16 -> B x 128 x 4 x 16 - > B x 128 x 64
x = self.MLP(x) # B x 128 x 768
x = self.norm(x)
return x
class FlattenPatchify1D(nn.Module):
""" Flatten 2D Image to a vector with pitch per token
"""
def __init__(
self,
in_channels: int = 4,
img_size: Optional[Union[int, tuple, list]] = 224,
embed_dim: int = 768,
patch_size: int = 8,
norm_layer: Optional[Callable] = None,
):
super().__init__()
# dummy, is not needed by the rotary model, but needed for REL and DiT
self.num_patches = img_size[0] * img_size[1] // patch_size # img_size: 128x16
self.patch_size = patch_size
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
self.MLP = nn.Sequential(nn.Linear(in_channels * patch_size, 256), nn.SiLU(), nn.Linear(256, embed_dim))
def forward(self, x):
x = x.permute(0, 2, 3, 1) # B x c x 128 x 16 -> B x 128 x 16 x c
b, n_time, n_pitch, c = x.shape
num_patches = n_time * n_pitch // self.patch_size
# B x 128 x 16 x 4 -> B x (128 x 16 / 8) x (4 * 8)
x = x.reshape(b, num_patches, -1)
x = self.MLP(x) # B x 256 x 768
x = self.norm(x)
return x
#################################################################################
# Core DiT Model #
#################################################################################
class RotaryAttention(nn.Module):
fused_attn: Final[bool]
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
attn_drop=0.,
proj_drop=0.,
norm_layer=nn.LayerNorm,
rotary_emb=None,
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.rotary_emb = rotary_emb
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.rotary_emb is not None:
q = self.rotary_emb.rotate_queries_or_keys(q)
k = self.rotary_emb.rotate_queries_or_keys(k)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class DiTBlockRotary(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning & rotary attention.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, rotary_emb=None, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = RotaryAttention(hidden_size, num_heads=num_heads, qkv_bias=True, rotary_emb=rotary_emb, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class FinalLayerPatch1D(nn.Module):
"""
The final layer of DiT with 1d Patchify.
"""
def __init__(self, hidden_size, out_channels, patch_size_1d=16):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size_1d*out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=3,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
num_classes=9, # cluster composers into 9 groups
learn_sigma=True,
patchify=True,
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.input_size = input_size
self.patchify = patchify
if patchify:
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
else:
self.x_embedder = FlattenNorm(input_size, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.num_classes = num_classes
if self.num_classes:
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
num_patches = self.x_embedder.num_patches
# Will use fixed sin-cos embedding:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
])
if patchify:
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
else:
self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
if self.patchify:
if isinstance(self.input_size, int) or len(self.input_size) == 1:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5))
else:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1])
else:
# 1D position encoding
pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1],
np.arange(self.x_embedder.num_patches, dtype=np.float32))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
if self.patchify:
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize label embedding table:
if self.num_classes:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
if isinstance(self.input_size, int) or len(self.input_size) == 1:
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
else:
h = self.input_size[0] // self.patch_size
w = self.input_size[1] // self.patch_size
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
def unflatten(self, x):
c = self.out_channels
x = x.reshape(shape=(x.shape[0], x.shape[1], c, -1))
imgs = x.permute(0, 2, 1, 3)
return imgs
def forward(self, x, t, y=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
c = self.t_embedder(t) # (N, D)
if self.num_classes and y is not None:
y = self.y_embedder(y, self.training) # (N, D)
c = c + y # (N, D)
for block in self.blocks:
x = block(x, c) # (N, T, D)
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
if self.patchify:
x = self.unpatchify(x) # (N, out_channels, H, W)
else:
x = self.unflatten(x)
return x
def forward_with_cfg(self, x, t, y, cfg_scale):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
class DiTRotary(nn.Module):
"""
Diffusion model with a Transformer backbone, with rotary position embedding.
Use 1D position encoding, patchify is set to False
"""
def __init__(
self,
input_size=32,
patch_size=8, # patch size for 1D patchify
in_channels=3,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
num_classes=9, # cluster composers into 9 groups
learn_sigma=True,
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.input_size = input_size
self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.num_classes = num_classes
if self.num_classes:
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
rotary_dim = int(hidden_size // num_heads * 0.5) # 0.5 is rotary percentage in multihead rope, by default 0.5
self.rotary_emb = RotaryEmbedding(rotary_dim)
self.blocks = nn.ModuleList([
DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth)
])
self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size_1d=self.patch_size)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize label embedding table:
if self.num_classes:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, T, img_size[1] / patch_size * C)
imgs: (N, H, W, C)
"""
# input_size[1] is the pitch dimension, should always be the same
x = x.reshape(shape=(x.shape[0], -1, self.input_size[1], self.out_channels))
imgs = x.permute(0, 3, 1, 2)
return imgs
def forward(self, x, t, y=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size
c = self.t_embedder(t) # (N, D)
if self.num_classes and y is not None:
y = self.y_embedder(y, self.training) # (N, D)
c = c + y # (N, D)
for block in self.blocks:
x = block(x, c) # (N, T, D)
x = self.final_layer(x, c) # (N, T, patch_size * out_channels)
x = self.unpatchify(x)
return x
class DiT_classifier(nn.Module):
"""
Classifier used in classifier guidance.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=3,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
num_classes=9,
patchify=True,
):
super().__init__()
self.in_channels = in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.input_size = input_size
self.patchify = patchify
if patchify:
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
else:
self.x_embedder = FlattenNorm(input_size, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.num_classes = num_classes
num_patches = self.x_embedder.num_patches
# Will use fixed sin-cos embedding:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
])
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True)
self.norm = nn.LayerNorm(hidden_size)
self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4),
nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes))
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
if self.patchify:
if isinstance(self.input_size, int) or len(self.input_size) == 1:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5))
else:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1])
else:
# 1D position encoding
pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1],
np.arange(self.x_embedder.num_patches, dtype=np.float32))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize class token
nn.init.normal_(self.cls_token, std=1e-6)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
if self.patchify:
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
def forward(self, x, t):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
c = self.t_embedder(t) # (N, D)
for block in self.blocks:
x = block(x, c) # (N, T, D)
x = x[:, 0, :] # (N, D)
x = self.norm(x)
x = self.classifier_head(x) # (N, num_classes)
return x
class DiTRotaryClassifier(nn.Module):
"""
Diffusion model with a Transformer backbone, with rotary position embedding.
Use 1D position encoding, patchify is set to False
"""
def __init__(
self,
input_size=32,
patch_size=8, # patch size for 1D patchify
in_channels=3,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
num_classes=9, # cluster composers into 9 groups
chord=False,
):
super().__init__()
self.in_channels = in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.input_size = input_size
self.chord = chord
self.hidden_size = hidden_size
self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.num_classes = num_classes
rotary_dim = int(hidden_size // num_heads * 0.5) # 0.5 is rotary percentage in multihead rope, by default 0.5
self.rotary_emb = RotaryEmbedding(rotary_dim)
self.blocks = nn.ModuleList([
DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth)
])
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True)
self.norm = nn.LayerNorm(hidden_size)
self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4),
nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes))
if self.chord:
self.norm_key = nn.LayerNorm(hidden_size)
# predict key also: 24 major and minor keys + null
self.classifier_head_key = nn.Sequential(nn.Linear(hidden_size, hidden_size//4),
nn.SiLU(), nn.Linear(hidden_size//4, 25))
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize class token
nn.init.normal_(self.cls_token, std=1e-6)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
def forward(self, x, t, y=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
if self.chord:
n_token = x.shape[2] // x.shape[3]
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
c = self.t_embedder(t) # (N, D)
for block in self.blocks:
x = block(x, c) # (N, T, D)
if self.chord:
x_key = x[:, 0, :]
x_key = self.norm_key(x_key)
key = self.classifier_head_key(x_key)
x_chord = x[:, 1:, :]
x_chord = x_chord.reshape(shape=[x.shape[0], n_token, -1, self.hidden_size])
x_chord = x_chord.mean(dim=-2)
x_chord = self.norm(x_chord)
chord = self.classifier_head(x_chord)
return key, chord
else:
x = x[:, 0, :] # (N, D)
x = self.norm(x)
x = self.classifier_head(x) # (N, num_classes)
return x
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size_h, dtype=np.float32)
grid_w = np.arange(grid_size_w, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# DiT Configs #
#################################################################################
def DiT_XL_2(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
def DiT_XL_4(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
def DiTRotary_XL_16(**kwargs):
return DiTRotary(depth=28, hidden_size=1152, patch_size=16, num_heads=16, **kwargs)
def DiTRotary_XL_8(**kwargs):
return DiTRotary(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
def DiT_XL_8(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
def DiT_L_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
def DiT_L_4(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
def DiT_L_8(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
def DiT_B_2(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
def DiT_B_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
def DiTRotary_B_16(**kwargs): # seq_len = 128 = 128 * 16/16
return DiTRotary(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs)
def DiTRotary_B_8(**kwargs): # seq_len = 256 = 128 * 16/8
return DiTRotary(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiT_B_8(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiT_B_4_classifier(**kwargs):
return DiT_classifier(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
def DiT_B_8_classifier(**kwargs):
return DiT_classifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiTRotary_B_8_classifier(**kwargs):
return DiTRotaryClassifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiT_S_2(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def DiT_S_2_classifier(**kwargs):
return DiT_classifier(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def DiTRotary_S_8_classifier(**kwargs):
return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
def DiTRotary_S_8_chord_classifier(**kwargs):
return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, chord=True, **kwargs)
def DiT_XS_2_classifier(**kwargs):
return DiT_classifier(depth=4, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def DiTRotary_XS_8_classifier(**kwargs):
return DiTRotaryClassifier(depth=4, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
def DiT_S_4(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def DiT_S_4_classifier(**kwargs):
return DiT_classifier(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def DiT_S_8(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
DiT_models = {
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
'DiTRotary_B_16': DiTRotary_B_16, 'DiTRotary_B_8': DiTRotary_B_8,
'DiTRotary_XL_16': DiTRotary_XL_16, 'DiTRotary_XL_8': DiTRotary_XL_8,
'DiT-B/4-cls': DiT_B_4_classifier, 'DiT-B/8-cls': DiT_B_8_classifier,
'DiT-S/4-cls': DiT_S_4_classifier, 'DiT-S/2-cls': DiT_S_2_classifier,
'DiT-XS/2-cls': DiT_XS_2_classifier,
'DiTRotary-XS/8-cls': DiTRotary_XS_8_classifier,
'DiTRotary-S/8-cls': DiTRotary_S_8_classifier,
'DiTRotary-S/8-chord-cls': DiTRotary_S_8_chord_classifier,
'DiTRotary-B/8-cls': DiTRotary_B_8_classifier,
}