File size: 39,889 Bytes
9965bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
from rotary_embedding_torch import RotaryEmbedding
from torch.jit import Final
import numpy as np
import math
from timm.models.vision_transformer import Attention, Mlp
from timm.models.vision_transformer_relpos import RelPosAttention
from timm.layers import Format, nchw_to, to_2tuple, _assert, RelPosBias, use_fused_attn
from typing import Callable, List, Optional, Tuple, Union
from functools import partial

def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################

class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


#################################################################################
#               Embedding Layers for Patches that Support H != W                #
#################################################################################

class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    output_fmt: Format

    def __init__(
            self,
            img_size: Optional[Union[int, tuple, list]] = 224,
            patch_size: Union[int, tuple, list] = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer: Optional[Callable] = None,
            flatten: bool = True,
            output_fmt: Optional[str] = None,
            bias: bool = True,
            strict_img_size: bool = True,
    ):
        super().__init__()
        self.patch_size = to_2tuple(patch_size)
        if img_size is not None:
            if isinstance(img_size, int):
                self.img_size = to_2tuple(img_size)
            elif len(img_size) == 1:
                self.img_size = to_2tuple(img_size[0])
            else:
                self.img_size = img_size
            self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
            self.num_patches = self.grid_size[0] * self.grid_size[1]
        else:
            self.img_size = None
            self.grid_size = None
            self.num_patches = None

        if output_fmt is not None:
            self.flatten = False
            self.output_fmt = Format(output_fmt)
        else:
            # flatten spatial dim and transpose to channels last, kept for bwd compat
            self.flatten = flatten
            self.output_fmt = Format.NCHW
        self.strict_img_size = strict_img_size

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        if self.img_size is not None:
            if self.strict_img_size:
                _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
                _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).")
            else:
                _assert(
                    H % self.patch_size[0] == 0,
                    f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
                )
                _assert(
                    W % self.patch_size[1] == 0,
                    f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
                )

        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        elif self.output_fmt != Format.NCHW:
            x = nchw_to(x, self.output_fmt)
        x = self.norm(x)
        return x


class FlattenNorm(nn.Module):
    """ Flatten 2D Image to a vector
    """

    def __init__(
            self,
            img_size: Optional[Union[int, tuple, list]] = 224,
            embed_dim: int = 768,
            norm_layer: Optional[Callable] = None,
    ):
        super().__init__()
        self.num_patches = max(img_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
        # todo: hard code 64 and hidden_dim for now
        self.MLP = nn.Sequential(nn.Linear(64, 256), nn.SiLU(), nn.Linear(256, embed_dim))

    def forward(self, x):
        x = x.permute(0, 2, 1, 3).flatten(2)   # B x 4 x 128 x 16 -> B x 128 x 4 x 16 - > B x 128 x 64
        x = self.MLP(x)    # B x 128 x 768
        x = self.norm(x)
        return x

    
class FlattenPatchify1D(nn.Module):
    """ Flatten 2D Image to a vector with pitch per token
    """

    def __init__(
            self,
            in_channels: int = 4,
            img_size: Optional[Union[int, tuple, list]] = 224,
            embed_dim: int = 768,
            patch_size: int = 8,
            norm_layer: Optional[Callable] = None,
    ):
        super().__init__()
        # dummy, is not needed by the rotary model, but needed for REL and DiT
        self.num_patches = img_size[0] * img_size[1] // patch_size   # img_size: 128x16
        self.patch_size = patch_size
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
        self.MLP = nn.Sequential(nn.Linear(in_channels * patch_size, 256), nn.SiLU(), nn.Linear(256, embed_dim))

    def forward(self, x):
        x = x.permute(0, 2, 3, 1)      # B x c x 128 x 16 -> B x 128 x 16 x c
        b, n_time, n_pitch, c = x.shape
        num_patches = n_time * n_pitch // self.patch_size
        # B x 128 x 16 x 4 -> B x (128 x 16 / 8) x (4 * 8)
        x = x.reshape(b, num_patches, -1)
        x = self.MLP(x)    # B x 256 x 768
        x = self.norm(x)
        return x


#################################################################################
#                                 Core DiT Model                                #
#################################################################################

class RotaryAttention(nn.Module):
    fused_attn: Final[bool]

    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            qk_norm=False,
            attn_drop=0.,
            proj_drop=0.,
            norm_layer=nn.LayerNorm,
            rotary_emb=None,
    ):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()
        self.rotary_emb = rotary_emb

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.rotary_emb is not None:
            q = self.rotary_emb.rotate_queries_or_keys(q)
            k = self.rotary_emb.rotate_queries_or_keys(k)

        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q, k, v,
                dropout_p=self.attn_drop.p,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class DiTBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
        x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class DiTBlockRotary(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning & rotary attention.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, rotary_emb=None, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = RotaryAttention(hidden_size, num_heads=num_heads, qkv_bias=True, rotary_emb=rotary_emb, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
        x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class FinalLayerPatch1D(nn.Module):
    """
    The final layer of DiT with 1d Patchify.
    """
    def __init__(self, hidden_size, out_channels, patch_size_1d=16):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size_1d*out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class DiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=3,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=9,    # cluster composers into 9 groups
        learn_sigma=True,
        patchify=True,
    ):
        super().__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.input_size = input_size
        self.patchify = patchify

        if patchify:
            self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        else:
            self.x_embedder = FlattenNorm(input_size, hidden_size)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.num_classes = num_classes
        if self.num_classes:
            self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
        num_patches = self.x_embedder.num_patches
        # Will use fixed sin-cos embedding:
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)

        self.blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
        ])
        if patchify:
            self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
        else:
            self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # Initialize (and freeze) pos_embed by sin-cos embedding:
        if self.patchify:
            if isinstance(self.input_size, int) or len(self.input_size) == 1:
                pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5))
            else:
                pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1])
        else:
            # 1D position encoding
            pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1],
                                              np.arange(self.x_embedder.num_patches, dtype=np.float32))
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        if self.patchify:
            w = self.x_embedder.proj.weight.data
            nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
            nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize label embedding table:
        if self.num_classes:
            nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        if isinstance(self.input_size, int) or len(self.input_size) == 1:
            h = w = int(x.shape[1] ** 0.5)
            assert h * w == x.shape[1]
        else:
            h = self.input_size[0] // self.patch_size
            w = self.input_size[1] // self.patch_size

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
        return imgs

    def unflatten(self, x):
        c = self.out_channels
        x = x.reshape(shape=(x.shape[0], x.shape[1], c, -1))
        imgs = x.permute(0, 2, 1, 3)
        return imgs

    def forward(self, x, t, y=None):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x = self.x_embedder(x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        c = self.t_embedder(t)                   # (N, D)
        if self.num_classes and y is not None:
            y = self.y_embedder(y, self.training)    # (N, D)
            c = c + y                                # (N, D)
        for block in self.blocks:
            x = block(x, c)                      # (N, T, D)
        x = self.final_layer(x, c)  # (N, T, patch_size ** 2 * out_channels)
        if self.patchify:
            x = self.unpatchify(x)                   # (N, out_channels, H, W)
        else:
            x = self.unflatten(x)
        return x

    def forward_with_cfg(self, x, t, y, cfg_scale):
        """
        Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[: len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, t, y)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)


class DiTRotary(nn.Module):
    """
    Diffusion model with a Transformer backbone, with rotary position embedding.
    Use 1D position encoding, patchify is set to False
    """

    def __init__(
        self,
        input_size=32,
        patch_size=8,   # patch size for 1D patchify
        in_channels=3,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        num_classes=9,  # cluster composers into 9 groups
        learn_sigma=True,
    ):
        super().__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.input_size = input_size

        self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.num_classes = num_classes
        if self.num_classes:
            self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)

        rotary_dim = int(hidden_size // num_heads * 0.5)   # 0.5 is rotary percentage in multihead rope, by default 0.5
        self.rotary_emb = RotaryEmbedding(rotary_dim)
        self.blocks = nn.ModuleList([
            DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth)
        ])
        self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size_1d=self.patch_size)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize label embedding table:
        if self.num_classes:
            nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def unpatchify(self, x):
        """
        x: (N, T, img_size[1] / patch_size * C)
        imgs: (N, H, W, C)
        """
        # input_size[1] is the pitch dimension, should always be the same
        x = x.reshape(shape=(x.shape[0], -1, self.input_size[1], self.out_channels))
        imgs = x.permute(0, 3, 1, 2)
        return imgs

    def forward(self, x, t, y=None):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x = self.x_embedder(x)  # (N, T, D), where T = H * W / patch_size
        c = self.t_embedder(t)  # (N, D)
        if self.num_classes and y is not None:
            y = self.y_embedder(y, self.training)  # (N, D)
            c = c + y  # (N, D)
        for block in self.blocks:
            x = block(x, c)  # (N, T, D)
        x = self.final_layer(x, c)  # (N, T, patch_size * out_channels)
        x = self.unpatchify(x)
        return x


class DiT_classifier(nn.Module):
    """
    Classifier used in classifier guidance.
    """
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=3,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        num_classes=9,
        patchify=True,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.input_size = input_size
        self.patchify = patchify

        if patchify:
            self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        else:
            self.x_embedder = FlattenNorm(input_size, hidden_size)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.num_classes = num_classes
        num_patches = self.x_embedder.num_patches
        # Will use fixed sin-cos embedding:
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)

        self.blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
        ])
        self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True)
        self.norm = nn.LayerNorm(hidden_size)
        self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4),
                                             nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes))
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        if self.patchify:
            if isinstance(self.input_size, int) or len(self.input_size) == 1:
                pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5))
            else:
                pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1])
        else:
            # 1D position encoding
            pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1],
                                              np.arange(self.x_embedder.num_patches, dtype=np.float32))
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize class token
        nn.init.normal_(self.cls_token, std=1e-6)

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        if self.patchify:
            w = self.x_embedder.proj.weight.data
            nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
            nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

    def forward(self, x, t):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x = self.x_embedder(x) + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        c = self.t_embedder(t)                   # (N, D)
        for block in self.blocks:
            x = block(x, c)                      # (N, T, D)
        x = x[:, 0, :]                           # (N, D)
        x = self.norm(x)
        x = self.classifier_head(x)                # (N, num_classes)
        return x


class DiTRotaryClassifier(nn.Module):
    """
    Diffusion model with a Transformer backbone, with rotary position embedding.
    Use 1D position encoding, patchify is set to False
    """

    def __init__(
        self,
        input_size=32,
        patch_size=8,   # patch size for 1D patchify
        in_channels=3,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        num_classes=9,  # cluster composers into 9 groups
        chord=False,
    ):
        super().__init__()
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.input_size = input_size
        self.chord = chord
        self.hidden_size = hidden_size

        self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.num_classes = num_classes

        rotary_dim = int(hidden_size // num_heads * 0.5)   # 0.5 is rotary percentage in multihead rope, by default 0.5
        self.rotary_emb = RotaryEmbedding(rotary_dim)
        self.blocks = nn.ModuleList([
            DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth)
        ])
        self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True)
        self.norm = nn.LayerNorm(hidden_size)
        self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4),
                                             nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes))
        if self.chord:
            self.norm_key = nn.LayerNorm(hidden_size)
            # predict key also: 24 major and minor keys + null
            self.classifier_head_key = nn.Sequential(nn.Linear(hidden_size, hidden_size//4),
                                             nn.SiLU(), nn.Linear(hidden_size//4, 25))
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize class token
        nn.init.normal_(self.cls_token, std=1e-6)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

    def forward(self, x, t, y=None):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        if self.chord:
            n_token = x.shape[2] // x.shape[3]
        x = self.x_embedder(x)  # (N, T, D), where T = H * W / patch_size
        x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        c = self.t_embedder(t)  # (N, D)
        for block in self.blocks:
            x = block(x, c)  # (N, T, D)
        if self.chord:
            x_key = x[:, 0, :]
            x_key = self.norm_key(x_key)
            key = self.classifier_head_key(x_key)
            x_chord = x[:, 1:, :]
            x_chord = x_chord.reshape(shape=[x.shape[0], n_token, -1, self.hidden_size])
            x_chord = x_chord.mean(dim=-2)
            x_chord = self.norm(x_chord)
            chord = self.classifier_head(x_chord)
            return key, chord
        else:
            x = x[:, 0, :]  # (N, D)
            x = self.norm(x)
            x = self.classifier_head(x)    # (N, num_classes)
            return x


#################################################################################
#                   Sine/Cosine Positional Embedding Functions                  #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py

def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False, extra_tokens=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size_h, dtype=np.float32)
    grid_w = np.arange(grid_size_w, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


#################################################################################
#                                   DiT Configs                                  #
#################################################################################

def DiT_XL_2(**kwargs):
    return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)

def DiT_XL_4(**kwargs):
    return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)

def DiTRotary_XL_16(**kwargs):
    return DiTRotary(depth=28, hidden_size=1152, patch_size=16, num_heads=16, **kwargs)

def DiTRotary_XL_8(**kwargs):
    return DiTRotary(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)

def DiT_XL_8(**kwargs):
    return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)

def DiT_L_2(**kwargs):
    return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)

def DiT_L_4(**kwargs):
    return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)

def DiT_L_8(**kwargs):
    return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)

def DiT_B_2(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)

def DiT_B_4(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)

def DiTRotary_B_16(**kwargs):   # seq_len = 128 = 128 * 16/16
    return DiTRotary(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs)

def DiTRotary_B_8(**kwargs):   # seq_len = 256 = 128 * 16/8
    return DiTRotary(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)

def DiT_B_8(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)

def DiT_B_4_classifier(**kwargs):
    return DiT_classifier(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)

def DiT_B_8_classifier(**kwargs):
    return DiT_classifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)

def DiTRotary_B_8_classifier(**kwargs):
    return DiTRotaryClassifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)

def DiT_S_2(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)

def DiT_S_2_classifier(**kwargs):
    return DiT_classifier(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)

def DiTRotary_S_8_classifier(**kwargs):
    return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)

def DiTRotary_S_8_chord_classifier(**kwargs):
    return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, chord=True, **kwargs)

def DiT_XS_2_classifier(**kwargs):
    return DiT_classifier(depth=4, hidden_size=384, patch_size=2, num_heads=6, **kwargs)

def DiTRotary_XS_8_classifier(**kwargs):
    return DiTRotaryClassifier(depth=4, hidden_size=384, patch_size=8, num_heads=6, **kwargs)

def DiT_S_4(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)

def DiT_S_4_classifier(**kwargs):
    return DiT_classifier(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)

def DiT_S_8(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)


DiT_models = {
    'DiT-XL/2': DiT_XL_2,  'DiT-XL/4': DiT_XL_4,  'DiT-XL/8': DiT_XL_8,
    'DiT-L/2':  DiT_L_2,   'DiT-L/4':  DiT_L_4,   'DiT-L/8':  DiT_L_8,
    'DiT-B/2':  DiT_B_2,   'DiT-B/4':  DiT_B_4,   'DiT-B/8':  DiT_B_8,
    'DiT-S/2':  DiT_S_2,   'DiT-S/4':  DiT_S_4,   'DiT-S/8':  DiT_S_8,
    'DiTRotary_B_16': DiTRotary_B_16,  'DiTRotary_B_8': DiTRotary_B_8,
    'DiTRotary_XL_16': DiTRotary_XL_16, 'DiTRotary_XL_8': DiTRotary_XL_8,
    'DiT-B/4-cls':  DiT_B_4_classifier,   'DiT-B/8-cls':  DiT_B_8_classifier,
    'DiT-S/4-cls': DiT_S_4_classifier, 'DiT-S/2-cls': DiT_S_2_classifier,
    'DiT-XS/2-cls': DiT_XS_2_classifier,
    'DiTRotary-XS/8-cls': DiTRotary_XS_8_classifier,
    'DiTRotary-S/8-cls': DiTRotary_S_8_classifier,
    'DiTRotary-S/8-chord-cls': DiTRotary_S_8_chord_classifier,
    'DiTRotary-B/8-cls': DiTRotary_B_8_classifier,
 }