# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F from rotary_embedding_torch import RotaryEmbedding from torch.jit import Final import numpy as np import math from timm.models.vision_transformer import Attention, Mlp from timm.models.vision_transformer_relpos import RelPosAttention from timm.layers import Format, nchw_to, to_2tuple, _assert, RelPosBias, use_fused_attn from typing import Callable, List, Optional, Tuple, Union from functools import partial def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Embedding Layers for Patches that Support H != W # ################################################################################# class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ output_fmt: Format def __init__( self, img_size: Optional[Union[int, tuple, list]] = 224, patch_size: Union[int, tuple, list] = 16, in_chans: int = 3, embed_dim: int = 768, norm_layer: Optional[Callable] = None, flatten: bool = True, output_fmt: Optional[str] = None, bias: bool = True, strict_img_size: bool = True, ): super().__init__() self.patch_size = to_2tuple(patch_size) if img_size is not None: if isinstance(img_size, int): self.img_size = to_2tuple(img_size) elif len(img_size) == 1: self.img_size = to_2tuple(img_size[0]) else: self.img_size = img_size self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) self.num_patches = self.grid_size[0] * self.grid_size[1] else: self.img_size = None self.grid_size = None self.num_patches = None if output_fmt is not None: self.flatten = False self.output_fmt = Format(output_fmt) else: # flatten spatial dim and transpose to channels last, kept for bwd compat self.flatten = flatten self.output_fmt = Format.NCHW self.strict_img_size = strict_img_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape if self.img_size is not None: if self.strict_img_size: _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") else: _assert( H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." ) _assert( W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." ) x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC elif self.output_fmt != Format.NCHW: x = nchw_to(x, self.output_fmt) x = self.norm(x) return x class FlattenNorm(nn.Module): """ Flatten 2D Image to a vector """ def __init__( self, img_size: Optional[Union[int, tuple, list]] = 224, embed_dim: int = 768, norm_layer: Optional[Callable] = None, ): super().__init__() self.num_patches = max(img_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() # todo: hard code 64 and hidden_dim for now self.MLP = nn.Sequential(nn.Linear(64, 256), nn.SiLU(), nn.Linear(256, embed_dim)) def forward(self, x): x = x.permute(0, 2, 1, 3).flatten(2) # B x 4 x 128 x 16 -> B x 128 x 4 x 16 - > B x 128 x 64 x = self.MLP(x) # B x 128 x 768 x = self.norm(x) return x class FlattenPatchify1D(nn.Module): """ Flatten 2D Image to a vector with pitch per token """ def __init__( self, in_channels: int = 4, img_size: Optional[Union[int, tuple, list]] = 224, embed_dim: int = 768, patch_size: int = 8, norm_layer: Optional[Callable] = None, ): super().__init__() # dummy, is not needed by the rotary model, but needed for REL and DiT self.num_patches = img_size[0] * img_size[1] // patch_size # img_size: 128x16 self.patch_size = patch_size self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() self.MLP = nn.Sequential(nn.Linear(in_channels * patch_size, 256), nn.SiLU(), nn.Linear(256, embed_dim)) def forward(self, x): x = x.permute(0, 2, 3, 1) # B x c x 128 x 16 -> B x 128 x 16 x c b, n_time, n_pitch, c = x.shape num_patches = n_time * n_pitch // self.patch_size # B x 128 x 16 x 4 -> B x (128 x 16 / 8) x (4 * 8) x = x.reshape(b, num_patches, -1) x = self.MLP(x) # B x 256 x 768 x = self.norm(x) return x ################################################################################# # Core DiT Model # ################################################################################# class RotaryAttention(nn.Module): fused_attn: Final[bool] def __init__( self, dim, num_heads=8, qkv_bias=False, qk_norm=False, attn_drop=0., proj_drop=0., norm_layer=nn.LayerNorm, rotary_emb=None, ): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.rotary_emb = rotary_emb self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.rotary_emb is not None: q = self.rotary_emb.rotate_queries_or_keys(q) k = self.rotary_emb.rotate_queries_or_keys(k) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p, ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class DiTBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def forward(self, x, c): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class DiTBlockRotary(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning & rotary attention. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, rotary_emb=None, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = RotaryAttention(hidden_size, num_heads=num_heads, qkv_bias=True, rotary_emb=rotary_emb, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def forward(self, x, c): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class FinalLayerPatch1D(nn.Module): """ The final layer of DiT with 1d Patchify. """ def __init__(self, hidden_size, out_channels, patch_size_1d=16): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size_1d*out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=3, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, num_classes=9, # cluster composers into 9 groups learn_sigma=True, patchify=True, ): super().__init__() self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.input_size = input_size self.patchify = patchify if patchify: self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) else: self.x_embedder = FlattenNorm(input_size, hidden_size) self.t_embedder = TimestepEmbedder(hidden_size) self.num_classes = num_classes if self.num_classes: self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) num_patches = self.x_embedder.num_patches # Will use fixed sin-cos embedding: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False) self.blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) ]) if patchify: self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) else: self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize (and freeze) pos_embed by sin-cos embedding: if self.patchify: if isinstance(self.input_size, int) or len(self.input_size) == 1: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5)) else: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1]) else: # 1D position encoding pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1], np.arange(self.x_embedder.num_patches, dtype=np.float32)) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): if self.patchify: w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) # Initialize label embedding table: if self.num_classes: nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] if isinstance(self.input_size, int) or len(self.input_size) == 1: h = w = int(x.shape[1] ** 0.5) assert h * w == x.shape[1] else: h = self.input_size[0] // self.patch_size w = self.input_size[1] // self.patch_size x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def unflatten(self, x): c = self.out_channels x = x.reshape(shape=(x.shape[0], x.shape[1], c, -1)) imgs = x.permute(0, 2, 1, 3) return imgs def forward(self, x, t, y=None): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 c = self.t_embedder(t) # (N, D) if self.num_classes and y is not None: y = self.y_embedder(y, self.training) # (N, D) c = c + y # (N, D) for block in self.blocks: x = block(x, c) # (N, T, D) x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) if self.patchify: x = self.unpatchify(x) # (N, out_channels, H, W) else: x = self.unflatten(x) return x def forward_with_cfg(self, x, t, y, cfg_scale): """ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, t, y) # For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) class DiTRotary(nn.Module): """ Diffusion model with a Transformer backbone, with rotary position embedding. Use 1D position encoding, patchify is set to False """ def __init__( self, input_size=32, patch_size=8, # patch size for 1D patchify in_channels=3, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, num_classes=9, # cluster composers into 9 groups learn_sigma=True, ): super().__init__() self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.input_size = input_size self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size) self.t_embedder = TimestepEmbedder(hidden_size) self.num_classes = num_classes if self.num_classes: self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) rotary_dim = int(hidden_size // num_heads * 0.5) # 0.5 is rotary percentage in multihead rope, by default 0.5 self.rotary_emb = RotaryEmbedding(rotary_dim) self.blocks = nn.ModuleList([ DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth) ]) self.final_layer = FinalLayerPatch1D(hidden_size, self.out_channels, patch_size_1d=self.patch_size) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize label embedding table: if self.num_classes: nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def unpatchify(self, x): """ x: (N, T, img_size[1] / patch_size * C) imgs: (N, H, W, C) """ # input_size[1] is the pitch dimension, should always be the same x = x.reshape(shape=(x.shape[0], -1, self.input_size[1], self.out_channels)) imgs = x.permute(0, 3, 1, 2) return imgs def forward(self, x, t, y=None): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size c = self.t_embedder(t) # (N, D) if self.num_classes and y is not None: y = self.y_embedder(y, self.training) # (N, D) c = c + y # (N, D) for block in self.blocks: x = block(x, c) # (N, T, D) x = self.final_layer(x, c) # (N, T, patch_size * out_channels) x = self.unpatchify(x) return x class DiT_classifier(nn.Module): """ Classifier used in classifier guidance. """ def __init__( self, input_size=32, patch_size=2, in_channels=3, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, num_classes=9, patchify=True, ): super().__init__() self.in_channels = in_channels self.patch_size = patch_size self.num_heads = num_heads self.input_size = input_size self.patchify = patchify if patchify: self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) else: self.x_embedder = FlattenNorm(input_size, hidden_size) self.t_embedder = TimestepEmbedder(hidden_size) self.num_classes = num_classes num_patches = self.x_embedder.num_patches # Will use fixed sin-cos embedding: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False) self.blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) ]) self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True) self.norm = nn.LayerNorm(hidden_size) self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4), nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes)) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) if self.patchify: if isinstance(self.input_size, int) or len(self.input_size) == 1: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5), int(self.x_embedder.num_patches ** 0.5)) else: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size[0], self.x_embedder.grid_size[1]) else: # 1D position encoding pos_embed = get_1d_sincos_pos_embed_from_grid(self.pos_embed.shape[-1], np.arange(self.x_embedder.num_patches, dtype=np.float32)) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # Initialize class token nn.init.normal_(self.cls_token, std=1e-6) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): if self.patchify: w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) def forward(self, x, t): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) c = self.t_embedder(t) # (N, D) for block in self.blocks: x = block(x, c) # (N, T, D) x = x[:, 0, :] # (N, D) x = self.norm(x) x = self.classifier_head(x) # (N, num_classes) return x class DiTRotaryClassifier(nn.Module): """ Diffusion model with a Transformer backbone, with rotary position embedding. Use 1D position encoding, patchify is set to False """ def __init__( self, input_size=32, patch_size=8, # patch size for 1D patchify in_channels=3, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, num_classes=9, # cluster composers into 9 groups chord=False, ): super().__init__() self.in_channels = in_channels self.patch_size = patch_size self.num_heads = num_heads self.input_size = input_size self.chord = chord self.hidden_size = hidden_size self.x_embedder = FlattenPatchify1D(in_channels, input_size, hidden_size, patch_size) self.t_embedder = TimestepEmbedder(hidden_size) self.num_classes = num_classes rotary_dim = int(hidden_size // num_heads * 0.5) # 0.5 is rotary percentage in multihead rope, by default 0.5 self.rotary_emb = RotaryEmbedding(rotary_dim) self.blocks = nn.ModuleList([ DiTBlockRotary(hidden_size, num_heads, mlp_ratio=mlp_ratio, rotary_emb=self.rotary_emb) for _ in range(depth) ]) self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size), requires_grad=True) self.norm = nn.LayerNorm(hidden_size) self.classifier_head = nn.Sequential(nn.Linear(hidden_size, hidden_size//4), nn.SiLU(), nn.Linear(hidden_size//4, self.num_classes)) if self.chord: self.norm_key = nn.LayerNorm(hidden_size) # predict key also: 24 major and minor keys + null self.classifier_head_key = nn.Sequential(nn.Linear(hidden_size, hidden_size//4), nn.SiLU(), nn.Linear(hidden_size//4, 25)) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize class token nn.init.normal_(self.cls_token, std=1e-6) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) def forward(self, x, t, y=None): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ if self.chord: n_token = x.shape[2] // x.shape[3] x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) c = self.t_embedder(t) # (N, D) for block in self.blocks: x = block(x, c) # (N, T, D) if self.chord: x_key = x[:, 0, :] x_key = self.norm_key(x_key) key = self.classifier_head_key(x_key) x_chord = x[:, 1:, :] x_chord = x_chord.reshape(shape=[x.shape[0], n_token, -1, self.hidden_size]) x_chord = x_chord.mean(dim=-2) x_chord = self.norm(x_chord) chord = self.classifier_head(x_chord) return key, chord else: x = x[:, 0, :] # (N, D) x = self.norm(x) x = self.classifier_head(x) # (N, num_classes) return x ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size_h, dtype=np.float32) grid_w = np.arange(grid_size_w, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# # DiT Configs # ################################################################################# def DiT_XL_2(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) def DiT_XL_4(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) def DiTRotary_XL_16(**kwargs): return DiTRotary(depth=28, hidden_size=1152, patch_size=16, num_heads=16, **kwargs) def DiTRotary_XL_8(**kwargs): return DiTRotary(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) def DiT_XL_8(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) def DiT_L_2(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) def DiT_L_4(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) def DiT_L_8(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) def DiT_B_2(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) def DiT_B_4(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) def DiTRotary_B_16(**kwargs): # seq_len = 128 = 128 * 16/16 return DiTRotary(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs) def DiTRotary_B_8(**kwargs): # seq_len = 256 = 128 * 16/8 return DiTRotary(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiT_B_8(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiT_B_4_classifier(**kwargs): return DiT_classifier(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) def DiT_B_8_classifier(**kwargs): return DiT_classifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiTRotary_B_8_classifier(**kwargs): return DiTRotaryClassifier(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiT_S_2(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def DiT_S_2_classifier(**kwargs): return DiT_classifier(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def DiTRotary_S_8_classifier(**kwargs): return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) def DiTRotary_S_8_chord_classifier(**kwargs): return DiTRotaryClassifier(depth=12, hidden_size=384, patch_size=8, num_heads=6, chord=True, **kwargs) def DiT_XS_2_classifier(**kwargs): return DiT_classifier(depth=4, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def DiTRotary_XS_8_classifier(**kwargs): return DiTRotaryClassifier(depth=4, hidden_size=384, patch_size=8, num_heads=6, **kwargs) def DiT_S_4(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) def DiT_S_4_classifier(**kwargs): return DiT_classifier(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) def DiT_S_8(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) DiT_models = { 'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8, 'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8, 'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8, 'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8, 'DiTRotary_B_16': DiTRotary_B_16, 'DiTRotary_B_8': DiTRotary_B_8, 'DiTRotary_XL_16': DiTRotary_XL_16, 'DiTRotary_XL_8': DiTRotary_XL_8, 'DiT-B/4-cls': DiT_B_4_classifier, 'DiT-B/8-cls': DiT_B_8_classifier, 'DiT-S/4-cls': DiT_S_4_classifier, 'DiT-S/2-cls': DiT_S_2_classifier, 'DiT-XS/2-cls': DiT_XS_2_classifier, 'DiTRotary-XS/8-cls': DiTRotary_XS_8_classifier, 'DiTRotary-S/8-cls': DiTRotary_S_8_classifier, 'DiTRotary-S/8-chord-cls': DiTRotary_S_8_chord_classifier, 'DiTRotary-B/8-cls': DiTRotary_B_8_classifier, }