File size: 9,987 Bytes
a12c07f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import argparse
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" 

import json
import random
import re
import torch
import numpy as np
from tqdm import tqdm
import shortuuid
import sys

from transformers import AutoModel, AutoTokenizer, AutoProcessor, AutoModelForSeq2SeqLM

from torch.utils.data import Dataset, DataLoader

from PIL import Image
import math

from .gpt4v import TaskSpec, ParsedAnswer, Question
from .exceptions import GPTOutputParseException, GPTMaxTriesExceededException
import threading
from typing import List, Tuple, Union
from loguru import logger
from copy import deepcopy
import time
import os

seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False



class MiniCPMModel(object):
    def __init__(self, task:TaskSpec,
                 model:str = "openbmb/MiniCPM-V-2_6-int4"):

        self.task:TaskSpec = task
        self.model = self.get_model(model)

        self.tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6-int4', trust_remote_code=True)

    
    def get_model(self, model):
        # Load the open-source model in

        if model == 'openbmb/MiniCPM-V-2_6-int4':
            model_weights = AutoModel.from_pretrained(model, trust_remote_code=True,
            attn_implementation='flash_attention_2', torch_dtype=torch.float16) # sdpa or flash_attention_2, no eager
            model_weights = model_weights.eval()

            return model_weights
        
        else:
            raise ValueError(f"Such model {model} does not exist!")

    def ask(self,  payload:dict, n_choices=1, temperature=0.7) -> Tuple[List[dict], List[dict]]:
        """
        args: 
            payload: json dictionary, prepared by `prepare_payload`
        """

        def minicpm_thread(self, idx, payload, results, temperature):

            # creation of payload
            mod_payload = deepcopy(payload)
            messages = payload['messages']
            max_tokens = payload['max_tokens']


            try:
                # Preparation for inference
                output_text = self.model.chat(
                    image=None,
                    msgs=messages,
                    tokenizer=self.tokenizer
                )
            except Exception as e:
                raise e
            
            # print('outputs: ', output_text)
            message = {'content' : output_text}

            results[idx] = {"metadata": output_text, "message": message} 

            return

        assert n_choices >= 1
        results = [None]  * n_choices 
        if n_choices > 1:
            minicpm_jobs = [threading.Thread(target=minicpm_thread,
                            args=(self, idx, payload, results, temperature))
                                for idx in range(n_choices)]
            for job in minicpm_jobs:
                job.start()
            for job in minicpm_jobs:
                job.join()
        else:
            minicpm_thread(self, 0, payload, results, temperature)

        messages:List[dict] = [ res["message"] for res in results]
        metadata:List[dict] = [ res["metadata"] for res in results]
        return messages, metadata


    @staticmethod
    def prepare_payload(question:Question,
            max_tokens=1000,
            verbose:bool=False,
            prepend:Union[dict, None]=None,
            **kwargs
            ) -> dict:

        image_dic = None
        text = ''
        dic_list = question.get_json()
        img_list = []
        for dic in question.get_json():
            # The case of text
            if dic['type'] == 'text':
                text += dic['text']

            # The case of vision input
            elif dic['type'] == 'image_url':
                img_list.append(dic['image'])

        if len(img_list) == 0:
            img_list.append(Image.new('RGB', (512, 512), color = (255, 255, 255)))

        content = [image for image in img_list]
        content.append(text)

        payload = {
            "messages": [
                {
                    'role': 'user',
                    "content":content,
                },
            ],
            "max_tokens": max_tokens,
        }


        return payload


    def rough_guess(self, question:Question, max_tokens=1000,
                    max_tries=1, query_id:int=0,
                    verbose=False, temperature=1,
                    **kwargs):
    
        p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, 
                                    model=self.model)

        ok = False
        reattempt = 0
        while not ok:
            response, meta_data = self.ask(p, temperature=temperature) 
            response = response[0] 
            # logger.info(f'response: {response}')
            try: 
                parsed_response = self.task.answer_type.parser(response["content"])
            except GPTOutputParseException as e:
                # logger.warning(f"The response was not parseable:\n\n{response}\n\nBecause\n\n{e}")
                # logger.warning(f"The response from LM was not parseable.")
                pass

                # if not os.path.exists('errors/'):
                #     # Create the directory if it doesn't exist
                #     os.makedirs('errors/')
                # error_saved = f'errors/{time.strftime("%Y-%m-%d-%H-%M-%S")}.json'
                # with open(error_saved, "w")  as f:
                #     f.write(p_ans.code)
                # logger.warning(f"The following was not parseable. Saved in {error_saved}.")
                
                reattempt += 1
                if reattempt > max_tries:
                    logger.error(f"max tries ({max_tries}) exceeded.")
                    raise GPTMaxTriesExceededException
             
                logger.warning(f"Attempt failed: Reattempt #{reattempt} querying LLM")
                continue
            ok = True 

        return parsed_response, response, meta_data, p

    def all_task_rough_guess(self, task, question:Question, max_tokens=1000,
                    max_tries=1, query_id:int=0,
                    verbose=False, temperature=1,
                    **kwargs):
    
        p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, 
                                    model=self.model)

        ok = False
        reattempt = 0
        while not ok:
            response, meta_data = self.ask(p, temperature=temperature) 
            response = response[0] 
            # logger.info(f'response: {response}')
            try: 
                parsed_response = task.answer_type.parser(response["content"])
            except GPTOutputParseException as e:
                # logger.warning(f"The following was not parseable:\n\n{response}\n\nBecause\n\n{e}")
                # logger.warning(f"The response from LM was not parseable.")
                pass

                # if not os.path.exists('errors/'):
                #     # Create the directory if it doesn't exist
                #     os.makedirs('errors/')
                # error_saved = f'errors/{time.strftime("%Y-%m-%d-%H-%M-%S")}.json'
                # with open(error_saved, "w")  as f:
                #     f.write(p_ans.code)
                # logger.warning(f"The following was not parseable. Saved in {error_saved}.")
                
                reattempt += 1
                if reattempt > max_tries:
                    logger.error(f"max tries ({max_tries}) exceeded.")
                    raise GPTMaxTriesExceededException
             
                logger.warning(f"Attempt failed: reattempt #{reattempt} querying LLM")
                continue
            ok = True 

        return parsed_response, response, meta_data, p

    def many_rough_guesses(self, num_threads:int,
                           question:Question, max_tokens=1000,
                           verbose=False, max_tries=1, temperature=1
                           ) -> List[Tuple[ParsedAnswer, str, dict, dict]]:
        """
        Args:
            num_threads : number of independent threads.
            all other  arguments are same as those of `rough_guess()`

        Returns
            List of elements, each element is a tuple following the
            return signature of `rough_guess()`
        """

        p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, 
                                    model=self.model)

        #  TODO
        n_choices = num_threads

        # TODO: wrap in robust-ask method, repeatedly asks until parseable output. 
        ok = False
        reattempt = 0
        while not ok:
            response, meta_data = self.ask(p, n_choices=n_choices, temperature=temperature)
            try:
                parsed_response = [self.task.answer_type.parser(r["content"]) for r in response]
            except GPTOutputParseException as e:
                # logger.warning(f"The following was not parseable:\n\n{response}\n\nBecause\n\n{e}")
                # logger.warning(f"The response from LM was not parseable.")
                pass

                # TODO provide the parse error message into GPT for the next round to be parsable
                reattempt += 1
                if reattempt > max_tries:
                    logger.error(f"max tries ({max_tries}) exceeded.")
                    raise GPTMaxTriesExceededException
             
                logger.warning(f"Attempt failed: Reattempt #{reattempt} querying LLM")
                continue
            ok = True 

        return parsed_response, response, meta_data, p

    def run_once(self, question:Question, max_tokens=1000, temperature=1, **kwargs):
        q = self.task.first_question(question) 
        p_ans, ans, meta, p = self.rough_guess(q, max_tokens=max_tokens, temperature=temperature, **kwargs)
        return p_ans, ans, meta, p