File size: 1,342 Bytes
f89796f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
#!/bin/bash
export HF_PROJECT="t5-v1.1-base-dutch-uncased"
export VOCAB_SIZE="32000"
export N_INPUT_SENTENCES="1000000" # Num of sentences to train the tokenizer
export DATASET="yhavinga/mc4_nl_cleaned" # Name of the dataset in the Huggingface Hub
export DATASET_CONFIG="full" # Config of the dataset in the Huggingface Hub
export DATASET_SPLIT="train" # Split to use for training tokenizer and model
export TEXT_FIELD="text" # Field containing the text to be used for training
export CONFIG_TYPE="google/t5-v1_1-base" # Config that our model will use
export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model
python run_t5_mlm_flax.py \
--output_dir="${MODEL_PATH}" \
--model_type="t5" \
--config_name="${MODEL_PATH}" \
--tokenizer_name="${MODEL_PATH}" \
--preprocessing_num_workers="96" \
--do_train --do_eval \
--dataset_name="${DATASET}" \
--dataset_config_name="${DATASET_CONFIG}" \
--max_seq_length="1024" \
--per_device_train_batch_size="8" \
--per_device_eval_batch_size="8" \
--adafactor \
--learning_rate="0.005" \
--overwrite_output_dir \
--num_train_epochs="2" \
--logging_steps="500" \
--save_steps="80000" \
--eval_steps="2500" \
--weight_decay="0.001" \
--warmup_steps="10000" \
--validation_split_count="15000" \
--push_to_hub
|