File size: 9,243 Bytes
f555b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
from pathlib import Path

import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError

from modules import sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
import modules.scripts

import requests as cr
import json
import uuid


def customWebhook(images):
    url = "https://api.planckstudio.in/aigen/index.php"

    payload = json.dumps({
        "token": "f2da2651-033d-475d-90bb-abe2820ab041",
        "request": "result",
        "data": {
            "email": "aigen@planckstudio.in",
            "server": "gradio",
            "uuid": str(uuid.uuid1()),
            "base64img": images
        }
    })
    headers = {
    'Content-Type': 'application/json'
    }

    response = cr.request("POST", url, headers=headers, data=payload)


def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0):
    processing.fix_seed(p)

    images = shared.listfiles(input_dir)

    is_inpaint_batch = False
    if inpaint_mask_dir:
        inpaint_masks = shared.listfiles(inpaint_mask_dir)
        is_inpaint_batch = bool(inpaint_masks)

        if is_inpaint_batch:
            print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")

    print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")

    save_normally = output_dir == ''

    p.do_not_save_grid = True
    p.do_not_save_samples = not save_normally

    state.job_count = len(images) * p.n_iter

    for i, image in enumerate(images):
        state.job = f"{i+1} out of {len(images)}"
        if state.skipped:
            state.skipped = False

        if state.interrupted:
            break
            
        p.filename = os.path.basename(image)

        try:
            img = Image.open(image)
        except UnidentifiedImageError as e:
            print(e)
            continue
        # Use the EXIF orientation of photos taken by smartphones.
        img = ImageOps.exif_transpose(img)

        if to_scale:
            p.width = int(img.width * scale_by)
            p.height = int(img.height * scale_by)

        p.init_images = [img] * p.batch_size

        image_path = Path(image)
        if is_inpaint_batch:
            # try to find corresponding mask for an image using simple filename matching
            if len(inpaint_masks) == 1:
                mask_image_path = inpaint_masks[0]
            else:
                # try to find corresponding mask for an image using simple filename matching
                mask_image_dir = Path(inpaint_mask_dir)
                masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*"))

                if len(masks_found) == 0:
                    print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.")
                    continue

                # it should contain only 1 matching mask
                # otherwise user has many masks with the same name but different extensions
                mask_image_path = masks_found[0]

            mask_image = Image.open(mask_image_path)
            p.image_mask = mask_image

        proc = modules.scripts.scripts_img2img.run(p, *args)
        if proc is None:
            proc = process_images(p)

        for n, processed_image in enumerate(proc.images):
            filename = image_path.name

            if n > 0:
                left, right = os.path.splitext(filename)
                filename = f"{left}-{n}{right}"

            if not save_normally:
                os.makedirs(output_dir, exist_ok=True)
                if processed_image.mode == 'RGBA':
                    processed_image = processed_image.convert("RGB")
                processed_image.save(os.path.join(output_dir, filename))


def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
    override_settings = create_override_settings_dict(override_settings_texts)

    is_batch = mode == 5

    if mode == 0:  # img2img
        image = init_img.convert("RGB")
        mask = None
    elif mode == 1:  # img2img sketch
        image = sketch.convert("RGB")
        mask = None
    elif mode == 2:  # inpaint
        image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
        alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
        mask = mask.convert('L').point(lambda x: 255 if x > 128 else 0, mode='1')
        mask = ImageChops.lighter(alpha_mask, mask).convert('L')
        image = image.convert("RGB")
    elif mode == 3:  # inpaint sketch
        image = inpaint_color_sketch
        orig = inpaint_color_sketch_orig or inpaint_color_sketch
        pred = np.any(np.array(image) != np.array(orig), axis=-1)
        mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
        mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
        blur = ImageFilter.GaussianBlur(mask_blur)
        image = Image.composite(image.filter(blur), orig, mask.filter(blur))
        image = image.convert("RGB")
    elif mode == 4:  # inpaint upload mask
        image = init_img_inpaint
        mask = init_mask_inpaint
    else:
        image = None
        mask = None

    # Use the EXIF orientation of photos taken by smartphones.
    if image is not None:
        image = ImageOps.exif_transpose(image)

    if selected_scale_tab == 1 and not is_batch:
        assert image, "Can't scale by because no image is selected"

        width = int(image.width * scale_by)
        height = int(image.height * scale_by)

    assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'

    p = StableDiffusionProcessingImg2Img(
        sd_model=shared.sd_model,
        outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
        outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
        prompt=prompt,
        negative_prompt=negative_prompt,
        styles=prompt_styles,
        seed=seed,
        subseed=subseed,
        subseed_strength=subseed_strength,
        seed_resize_from_h=seed_resize_from_h,
        seed_resize_from_w=seed_resize_from_w,
        seed_enable_extras=seed_enable_extras,
        sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
        batch_size=batch_size,
        n_iter=n_iter,
        steps=steps,
        cfg_scale=cfg_scale,
        width=width,
        height=height,
        restore_faces=restore_faces,
        tiling=tiling,
        init_images=[image],
        mask=mask,
        mask_blur=mask_blur,
        inpainting_fill=inpainting_fill,
        resize_mode=resize_mode,
        denoising_strength=denoising_strength,
        image_cfg_scale=image_cfg_scale,
        inpaint_full_res=inpaint_full_res,
        inpaint_full_res_padding=inpaint_full_res_padding,
        inpainting_mask_invert=inpainting_mask_invert,
        override_settings=override_settings,
    )

    p.scripts = modules.scripts.scripts_img2img
    p.script_args = args

    if shared.cmd_opts.enable_console_prompts:
        print(f"\nimg2img: {prompt}", file=shared.progress_print_out)

    if mask:
        p.extra_generation_params["Mask blur"] = mask_blur

    if is_batch:
        assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"

        process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by)

        processed = Processed(p, [], p.seed, "")
    else:
        processed = modules.scripts.scripts_img2img.run(p, *args)
        if processed is None:
            processed = process_images(p)

    p.close()

    shared.total_tqdm.clear()

    generation_info_js = processed.js()
    if opts.samples_log_stdout:
        print(generation_info_js)

    if opts.do_not_show_images:
        processed.images = []

    ii = []
    for i in processed.images:
        ii.append(str(encode_pil_to_base64(i)))

    customWebhook(populate.uuid,ii)

    return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)