File size: 2,369 Bytes
03231f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import librosa
import librosa.display
import numpy as np
import pandas as pd
import scipy
from scipy.stats import skew
import matplotlib.pyplot as plt
SAMPLE_RATE = 44100
def get_mfcc(name, path):
data, _ = librosa.core.load(path + name, sr = SAMPLE_RATE)
assert _ == SAMPLE_RATE
try:
ft1 = librosa.feature.mfcc(data, sr = SAMPLE_RATE, n_mfcc=30)
ft2 = librosa.feature.zero_crossing_rate(data)[0]
ft3 = librosa.feature.spectral_rolloff(data)[0]
ft4 = librosa.feature.spectral_centroid(data)[0]
ft5 = librosa.feature.spectral_contrast(data)[0]
ft6 = librosa.feature.spectral_bandwidth(data)[0]
ft1_trunc = np.hstack((np.mean(ft1, axis=1), np.std(ft1, axis=1), skew(ft1, axis = 1), np.max(ft1, axis = 1),
np.median(ft1, axis = 1), np.min(ft1, axis = 1)))
ft2_trunc = np.hstack((np.mean(ft2), np.std(ft2), skew(ft2), np.max(ft2), np.median(ft2), np.min(ft2)))
ft3_trunc = np.hstack((np.mean(ft3), np.std(ft3), skew(ft3), np.max(ft3), np.median(ft3), np.min(ft3)))
ft4_trunc = np.hstack((np.mean(ft4), np.std(ft4), skew(ft4), np.max(ft4), np.median(ft4), np.min(ft4)))
ft5_trunc = np.hstack((np.mean(ft5), np.std(ft5), skew(ft5), np.max(ft5), np.median(ft5), np.min(ft5)))
ft6_trunc = np.hstack((np.mean(ft6), np.std(ft6), skew(ft6), np.max(ft6), np.median(ft6), np.max(ft6)))
return pd.Series(np.hstack((ft1_trunc, ft2_trunc, ft3_trunc, ft4_trunc, ft5_trunc, ft6_trunc)))
except:
print('bad file')
return pd.Series([0]*210)
def MFCC_spectrogram(y, sr):
# 提取頻域音頻資料 MFCC spectrogram feature
melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
# 轉成 log scale 已呈現頻譜資料
logmelspec = librosa.power_to_db(melspec)
# 繪圖
plt.figure()
librosa.display.specshow(logmelspec, sr=sr, x_axis='time', y_axis='mel')
plt.title('Features of unknow frog by MFCC (Mel Frquency Cepstral Coefficients)')
plt.show()
def FeatureExtraction(fname):
# 創建文件檔
test= pd.DataFrame({'fname':[fname]})
# 特徵提取
test_data = test['fname'].progress_apply(get_mfcc, path='')
test_data = test_data.values
return test_data
|