File size: 2,628 Bytes
4d2ea61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./sample_speech.py
- generated_from_trainer
metrics:
- wer
model-index:
- name: ko-xlsr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ko-xlsr

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4269
- Cer: 0.1119
- Wer: 0.3072

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Cer    | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 1.54          | 0.94  | 2000  | 1.0057          | 0.2617 | 0.6135 |
| 1.1895        | 1.89  | 4000  | 0.7782          | 0.2040 | 0.5035 |
| 1.0582        | 2.83  | 6000  | 0.6767          | 0.1826 | 0.4655 |
| 0.9586        | 3.77  | 8000  | 0.6273          | 0.1690 | 0.4380 |
| 0.8831        | 4.72  | 10000 | 0.5884          | 0.1552 | 0.4071 |
| 0.8318        | 5.66  | 12000 | 0.5510          | 0.1469 | 0.3897 |
| 0.7725        | 6.6   | 14000 | 0.5327          | 0.1407 | 0.3726 |
| 0.7254        | 7.55  | 16000 | 0.5081          | 0.1416 | 0.3676 |
| 0.6802        | 8.49  | 18000 | 0.4846          | 0.1313 | 0.3502 |
| 0.6386        | 9.43  | 20000 | 0.4676          | 0.1241 | 0.3344 |
| 0.5949        | 10.37 | 22000 | 0.4510          | 0.1185 | 0.3250 |
| 0.5736        | 11.32 | 24000 | 0.4416          | 0.1161 | 0.3189 |
| 0.5451        | 12.26 | 26000 | 0.4338          | 0.1143 | 0.3144 |
| 0.5375        | 13.2  | 28000 | 0.4287          | 0.1126 | 0.3095 |
| 0.5335        | 14.15 | 30000 | 0.4273          | 0.1122 | 0.3079 |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1