File size: 2,409 Bytes
14b7e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- ko
- ja
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: tst-translation-output2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tst-translation-output2
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9049
- Bleu: 10.3643
- Gen Len: 17.4046
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 35
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.2499 | 0.23 | 1500 | 1.1806 | 6.1112 | 18.0495 |
| 1.1007 | 0.46 | 3000 | 1.0686 | 7.4845 | 17.6068 |
| 1.0334 | 0.68 | 4500 | 1.0013 | 9.0076 | 17.6214 |
| 0.992 | 0.91 | 6000 | 0.9599 | 8.6786 | 17.868 |
| 0.7881 | 1.14 | 7500 | 0.9644 | 9.2343 | 17.2061 |
| 0.7675 | 1.37 | 9000 | 0.9427 | 10.0578 | 17.6006 |
| 0.7665 | 1.59 | 10500 | 0.9238 | 10.436 | 17.2095 |
| 0.7707 | 1.82 | 12000 | 0.9049 | 10.5971 | 17.2971 |
| 0.6119 | 2.05 | 13500 | 0.9392 | 10.8369 | 17.3201 |
| 0.5579 | 2.28 | 15000 | 0.9429 | 10.3486 | 17.3221 |
| 0.5633 | 2.5 | 16500 | 0.9310 | 10.6114 | 17.3679 |
| 0.5764 | 2.73 | 18000 | 0.9265 | 9.9612 | 17.1339 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|