|
--- |
|
tags: |
|
- image-classification |
|
library_name: generic |
|
--- |
|
|
|
## Example |
|
|
|
The model is by no means a state-of-the-art model, but nevertheless |
|
produces reasonable image captioning results. It was mainly fine-tuned |
|
as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework. |
|
|
|
The model can be used as follows: |
|
|
|
**In PyTorch** |
|
```python |
|
|
|
import torch |
|
import requests |
|
from PIL import Image |
|
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel |
|
|
|
|
|
loc = "ydshieh/vit-gpt2-coco-en" |
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc) |
|
tokenizer = AutoTokenizer.from_pretrained(loc) |
|
model = VisionEncoderDecoderModel.from_pretrained(loc) |
|
model.eval() |
|
|
|
|
|
def predict(image): |
|
|
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
|
|
return preds |
|
|
|
|
|
# We will verify our results on an image of cute cats |
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
with Image.open(requests.get(url, stream=True).raw) as image: |
|
preds = predict(image) |
|
|
|
print(preds) |
|
# should produce |
|
# ['a cat laying on top of a couch next to another cat'] |
|
|
|
``` |
|
|
|
**In Flax** |
|
```python |
|
|
|
import jax |
|
import requests |
|
from PIL import Image |
|
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel |
|
|
|
|
|
loc = "ydshieh/vit-gpt2-coco-en" |
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained(loc) |
|
tokenizer = AutoTokenizer.from_pretrained(loc) |
|
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) |
|
|
|
gen_kwargs = {"max_length": 16, "num_beams": 4} |
|
|
|
|
|
# This takes sometime when compiling the first time, but the subsequent inference will be much faster |
|
@jax.jit |
|
def generate(pixel_values): |
|
output_ids = model.generate(pixel_values, **gen_kwargs).sequences |
|
return output_ids |
|
|
|
|
|
def predict(image): |
|
|
|
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values |
|
output_ids = generate(pixel_values) |
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
|
|
return preds |
|
|
|
|
|
# We will verify our results on an image of cute cats |
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
with Image.open(requests.get(url, stream=True).raw) as image: |
|
preds = predict(image) |
|
|
|
print(preds) |
|
# should produce |
|
# ['a cat laying on top of a couch next to another cat'] |
|
|
|
``` |