File size: 21,888 Bytes
0dce8b2 59d9a7f 0dce8b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for KOSMOS-2."""
import copy
import math
import re
from typing import List, Optional, Tuple, Union
import numpy as np
from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput, is_batched
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
from transformers.utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
BboxInput = Union[
List[Tuple[int, int]],
List[Tuple[float, float, float, float]],
List[List[Tuple[int, int]]],
List[List[Tuple[float, float, float]]],
]
class Kosmos2Processor(ProcessorMixin):
r"""
Constructs an KOSMOS-2 processor which wraps a CLIP image processor and a KOSMOS-2 tokenizer into a single
processor.
[`Kosmos2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`Kosmos2TokenizerFast`]. See the
docstring of [`~Kosmos2Processor.__call__`] and [`~Kosmos2Processor.decode`] for more information.
Args:
image_processor (`CLIPImageProcessor`):
An instance of [`CLIPImageProcessor`]. The image processor is a required input.
tokenizer (`Kosmos2TokenizerFast`):
An instance of ['Kosmos2TokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
tokenizer_class = ("Kosmos2Tokenizer", "Kosmos2TokenizerFast")
def __init__(self, image_processor, tokenizer):
tokenizer.return_token_type_ids = False
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, List[TextInput]] = None,
bboxes: BboxInput = None,
num_image_tokens: Optional[int] = 64,
first_image_token_id: Optional[int] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_token_type_ids: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
"""
This method uses [`CLIPImageProcessor.__call__`] method to prepare image(s) for the model, and
[`Kosmos2TokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if text is None:
raise ValueError("You have to specify at least `text`.")
text = self.preprocess_text(text, images, bboxes, num_image_tokens=num_image_tokens)
encoding = BatchFeature()
text_encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
encoding.update(text_encoding)
if images is not None:
image_encoding = self.image_processor(images, return_tensors=return_tensors)
encoding.update(image_encoding)
# Use the id of the first token after <unk>
if first_image_token_id is None:
first_image_token_id = self.tokenizer.unk_token_id + 1
# To see if we need one more `0` (for `<s>`) at the beginning of `img_attn_mask`.
with_bos = add_special_tokens
# The first (actual) `<image>` token is always at the 1st or 2nd place (after `<s>` if any). Here we look
# for the second `<image>` token (which indicate the first image token).
start_index = int(with_bos) + 1
if return_tensors:
# change the ids for the fake `<image>` tokens in `input_ids`
input_ids = np.array(encoding["input_ids"])
input_ids[:, start_index : (start_index + num_image_tokens)] = np.arange(
first_image_token_id, first_image_token_id + num_image_tokens
)
batch_size, seq_len = input_ids.shape[:2]
img_attn_mask = []
if with_bos:
# for `<s>`
img_attn_mask.append(np.zeros(shape=(batch_size, 1), dtype=np.int64))
# for `<image>` (the real one)
img_attn_mask.append(np.zeros(shape=(batch_size, 1), dtype=np.int64))
# for image tokens
img_attn_mask.append(np.ones(shape=(batch_size, 64), dtype=np.int64))
# for `</image>`
img_attn_mask.append(np.zeros(shape=(batch_size, 1), dtype=np.int64))
# trailing part (which are not related to the image)
seq_len -= int(with_bos) + 1 + num_image_tokens + 1
img_attn_mask.append(np.zeros(shape=(batch_size, seq_len), dtype=np.int64))
# concatenate along the sequence dimension
img_attn_mask = np.concatenate(img_attn_mask, axis=1)
# to the target tensor type
if return_tensors == "pt":
input_ids = torch.from_numpy(input_ids)
img_attn_mask = torch.from_numpy(img_attn_mask)
elif return_tensors == "tf":
input_ids = tf.convert_to_tensor(input_ids)
img_attn_mask = tf.convert_to_tensor(img_attn_mask)
encoding["input_ids"] = input_ids
encoding["img_attn_mask"] = img_attn_mask
else:
# Add `img_attn_mask`: the leading and trailing `0` are for `boi` and `eoi` tokens. The `1` indicates
# the places of image tokens.
image_token_ids = list(range(first_image_token_id, first_image_token_id + num_image_tokens))
base_img_attn_mask = [0] + [1] * num_image_tokens + [0]
# loop over `encoding["input_ids"]`
input_ids = []
img_attn_mask = []
all_input_ids = encoding["input_ids"]
# not batched -> (changed to) batch of size 1
if isinstance(text, str):
all_input_ids = [all_input_ids]
for text_ids in all_input_ids:
# change the ids for the fake `<image>` tokens in `input_ids`
text_ids = text_ids[:start_index] + image_token_ids + text_ids[start_index + num_image_tokens :]
input_ids.append(text_ids)
mask = copy.copy(base_img_attn_mask)
if with_bos:
# for `<s>`
mask = [0] + mask
# trailing part (which are not related to the image)
mask += [0] * (len(text_ids) - len(mask))
img_attn_mask.append(mask)
# un-batch if necessary
if isinstance(text, str):
input_ids = input_ids[0]
img_attn_mask = img_attn_mask[0]
encoding["input_ids"] = input_ids
encoding["img_attn_mask"] = img_attn_mask
return encoding
def preprocess_text(
self,
texts: Union[TextInput, List[TextInput]],
images: ImageInput = None,
bboxes: BboxInput = None,
num_image_tokens: Optional[int] = 64,
) -> Union[str, List[str]]:
"""Add image and bounding box information to `texts` as image and patch index tokens.
Args:
texts (`Union[TextInput, List[TextInput]]`): The texts to be processed.
images (`ImageInput`, *optional*): The images associated to `texts`.
bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*): The bounding bboxes associated to `texts`.
num_image_tokens (`int`, *optional*, defaults to 64): The number of image tokens (used as latent queries). This should corresponds to the `latent_query_num` attribute in `Kosmos2Config`.
Returns:
`Union[TextInput, List[TextInput]]`: The processed texts with image and patch index tokens.
"""
# These are fake `<image>` tokens enclosed between (the actual) `<image>` token and `</image>`.
img_tokens = ["<image>"] * num_image_tokens
img_info = " ".join(["<image>"] + img_tokens + ["</image>"])
def check_bboxes_for_single_text(bboxes):
"""
Check `bboxes` for a single text example. It could be
- `None`: no bounding box associated to a text.
- A list with each element being the bounding boxes associated to one `<phrase> ... </phrase>` pair
found in a text. This could be:
- `None`: no bounding box associated to a `<phrase> ... </phrase>` pair.
- A tuple of 2 integers: A single bounding box specified by patch indices.
- A tuple of 4 float point number: A single bounding box specified by (normalized) coordinates.
- A list containing the above 2 tuple types: Multiple bounding boxes for a
`<phrase> ... </phrase>` pair.
"""
if bboxes is None:
return
elif not isinstance(bboxes, list):
raise ValueError("`bboxes` (for a single text example) should be `None` or a list.")
# `bbox` is the bounding boxes for a single <phrase> </phrase> pair
for bbox in bboxes:
if bbox is None:
continue
elif not isinstance(bbox, list):
bbox = [bbox]
for elt in bbox:
if not isinstance(elt, tuple) or not (
(len(elt) == 2 and all(isinstance(x, int) for x in elt))
or (len(elt) == 4 and all(isinstance(x, float) for x in elt))
):
raise ValueError(
"Each element in `bboxes` (for a single text example) should be `None`, a tuple containing "
"2 integers or 4 float point numbers, or a list containing such tuples. Also "
"make sure the arguments `texts` and `bboxes` passed to `preprocess_text` are both in "
"batches or both for a single example."
)
def preprocess_single(text, image, bboxes):
if image is not None:
# Add `<image> ... (fake) image tokens ... </image>`
text = f"{img_info} {text}"
# Add `<object> <patch_idx_xxxx> <patch_idx_yyy> </object>` after `<phrase> phrase text </phrase>`
text = self._insert_patch_index_tokens(text, bboxes)
text = self._add_remove_spaces_around_tag_tokens(text)
return text
# make batch to simplify processing logic
batched = True
if isinstance(texts, str):
batched = False
texts = [texts]
if images is None:
images = [None] * len(texts)
elif not is_batched(images):
images = [images]
if len(texts) != len(images):
raise ValueError(
f"The number of examples in `texts` and `images` should be the same. Got {len(texts)} v.s. {len(images)} instead."
)
if not batched:
check_bboxes_for_single_text(bboxes)
bboxes = [bboxes]
elif bboxes is not None:
if not isinstance(bboxes, list):
raise ValueError("`bboxes` should be `None` or a list (as a batch) when `texts` is passed as a batch.")
for x in bboxes:
check_bboxes_for_single_text(x)
else:
bboxes = [None] * len(texts)
if len(bboxes) != len(texts):
raise ValueError(
f"The number of examples in `texts` and `bboxes` should be the same. Got {len(texts)} v.s. {len(bboxes)} instead."
)
result = [preprocess_single(text, image, bbox) for text, image, bbox in zip(texts, images, bboxes)]
# un-batch if necessary
if not batched:
result = result[0]
return result
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_processor_generation(self, text):
return text.split("</image>")[-1]
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def _insert_patch_index_tokens(self, text: str, bboxes: Union[List[Tuple[int]], List[Tuple[float]]]) -> str:
if bboxes is None or len(bboxes) == 0:
return text
matched_phrases = list(re.finditer(r"<phrase>.+?</phrase>", string=text))
if len(matched_phrases) != len(bboxes):
raise ValueError(
f"The number of elements in `bboxes` should be the same as the number of `<phrase> ... </phrase>` pairs in `text`. Got {len(matched_phrases)} v.s. {len(bboxes)} instead."
)
# insert object's patch index tokens
# the found `<phrase> ... </phrase>` pairs.
curr_pos = 0
buffer = []
for matched, bbox in zip(matched_phrases, bboxes):
_, end = matched.span()
buffer.append(text[curr_pos:end])
curr_pos = end
# A phrase without bbox
if bbox is None:
continue
# A phrase with a single bbox
if isinstance(bbox, tuple):
bbox = [bbox]
patch_index_strings = []
# A phrase could have multiple bboxes
for box in bbox:
patch_index_1, patch_index_2 = self._convert_bbox_to_patch_index_tokens(box)
patch_index_strings.append(f"{patch_index_1} {patch_index_2}")
position_str = " </delimiter_of_multi_objects/> ".join(patch_index_strings)
buffer.append(f"<object> {position_str} </object>")
# remaining
if curr_pos < len(text):
buffer.append(text[curr_pos:])
text = "".join(buffer)
return text
def _convert_bbox_to_patch_index_tokens(
self, bbox: Union[Tuple[int, int], Tuple[float, float, float, float]]
) -> Tuple[str, str]:
# already computed patch indices
if len(bbox) == 2:
idx_1, idx_2 = bbox
# bbox specified with (normalized) coordinates
else:
# use `self.tokenizer` to get `num_patches_per_side`
num_patches_per_side = int(math.sqrt(self.tokenizer.num_patch_index_tokens))
idx_1, idx_2 = coordinate_to_patch_index(bbox, num_patches_per_side)
token_1 = f"<patch_index_{str(idx_1).zfill(4)}>"
token_2 = f"<patch_index_{str(idx_2).zfill(4)}>"
return token_1, token_2
def _add_remove_spaces_around_tag_tokens(self, text):
"""
Remove spaces before tag tokens (e.g. `<x>`). Also ensure a space after a tag token, if it is not followed by
another tag token (this is not technically necessary, but good for a standard/consistent format). This avoids
the inconsistency of tokenization results between kosmos-2 slow and fast tokenizers.
"""
tag_tokens = set(
self.tokenizer.tag_tokens
+ [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.tokenizer.num_patch_index_tokens)]
)
pattern = "|".join(tag_tokens)
splits = re.split(rf"({pattern})", text)
output = ""
prev_str_in_targets = False
for split in splits:
if split in tag_tokens:
prev_str_in_targets = True
output = output.rstrip() + split
else:
# we don't need to ensure a space before a normal token that is after a tag token. But having it and
# keeps a standard format is good anyway.
if prev_str_in_targets and not split.startswith(" "):
output += " " + split
else:
output += split
prev_str_in_targets = False
return output
def coordinate_to_patch_index(bbox: Tuple[float, float, float, float], num_patches_per_side: int) -> Tuple[int, int]:
"""Convert a bounding box to a pair of patch indices.
Args:
bbox (`Tuple[float, float, float, float]`):
The 4 coordinates of the bounding box, with the format being (x1, y1, x2, y2) specifying the upper-left
and lower-right corners of the box. It should have x2 > x1 and y1 > y2.
num_patches_per_side (`int`): the number of patches along each side.
Returns:
`Tuple[int, int]`: A pair of patch indices.
"""
(x1, y1, x2, y2) = bbox
ul_x = math.floor(x1 * num_patches_per_side)
ul_y = math.floor(y1 * num_patches_per_side)
lr_x = math.ceil(x2 * num_patches_per_side - 1)
lr_y = math.ceil(y2 * num_patches_per_side - 1)
ul_idx = ul_y * num_patches_per_side + ul_x
lr_idx = lr_y * num_patches_per_side + lr_x
return ul_idx, lr_idx
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L35C1-L75C38
def patch_index_to_coordinate(ul_idx: int, lr_idx: int, num_patches_per_side: int):
"""
Given a grid of length `num_patches_per_side` and the indices of the upper-left and lower-right corners of a
bounding box, returns the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
Args:
ul_idx (`int`): the index of the grid cell that corresponds to the upper-left corner of the bounding box.
lr_idx (`int`): the index of the grid cell that corresponds to the lower-right corner of the bounding box.
num_patches_per_side (`int`): the number of patches along each side.
Returns:
`Tuple[float]`: the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
"""
# Compute the size of each cell in the grid
cell_size = 1.0 / num_patches_per_side
# Compute the x and y indices of the upper-left and lower-right corners of the bounding box
ul_x = ul_idx % num_patches_per_side
ul_y = ul_idx // num_patches_per_side
lr_x = lr_idx % num_patches_per_side
lr_y = lr_idx // num_patches_per_side
# Compute the normalized coordinates of the bounding box
if ul_idx == lr_idx:
x1 = ul_x * cell_size
y1 = ul_y * cell_size
x2 = lr_x * cell_size + cell_size
y2 = lr_y * cell_size + cell_size
elif ul_x == lr_x or ul_y == lr_y:
x1 = ul_x * cell_size
y1 = ul_y * cell_size
x2 = lr_x * cell_size + cell_size
y2 = lr_y * cell_size + cell_size
else:
x1 = ul_x * cell_size + cell_size / 2
y1 = ul_y * cell_size + cell_size / 2
x2 = lr_x * cell_size + cell_size / 2
y2 = lr_y * cell_size + cell_size / 2
return x1, y1, x2, y2
|