ycsong-eugene commited on
Commit
ea09f7f
·
1 Parent(s): a4dccdc

dup gpt model

Browse files
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pytorch
6
+ - causal-lm
7
+ license: apache-2.0
8
+ datasets:
9
+ - EleutherAI/pile
10
+ ---
11
+
12
+ # GPT-J 6B
13
+
14
+ ## Model Description
15
+
16
+ GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
17
+
18
+ <figure>
19
+
20
+ | Hyperparameter | Value |
21
+ |----------------------|------------|
22
+ | \\(n_{parameters}\\) | 6053381344 |
23
+ | \\(n_{layers}\\) | 28&ast; |
24
+ | \\(d_{model}\\) | 4096 |
25
+ | \\(d_{ff}\\) | 16384 |
26
+ | \\(n_{heads}\\) | 16 |
27
+ | \\(d_{head}\\) | 256 |
28
+ | \\(n_{ctx}\\) | 2048 |
29
+ | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) |
30
+ | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
31
+ | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
32
+ <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p>
33
+ <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
34
+
35
+ The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
36
+ dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
37
+ dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
38
+ GPT-2/GPT-3.
39
+
40
+ ## Intended Use and Limitations
41
+
42
+ GPT-J learns an inner representation of the English language that can be used to
43
+ extract features useful for downstream tasks. The model is best at what it was
44
+ pretrained for however, which is generating text from a prompt.
45
+
46
+ ### Out-of-scope use
47
+
48
+ GPT-J-6B is **not** intended for deployment without fine-tuning, supervision,
49
+ and/or moderation. It is not a in itself a product and cannot be used for
50
+ human-facing interactions. For example, the model may generate harmful or
51
+ offensive text. Please evaluate the risks associated with your particular use case.
52
+
53
+ GPT-J-6B was trained on an English-language only dataset, and is thus **not**
54
+ suitable for translation or generating text in other languages.
55
+
56
+ GPT-J-6B has not been fine-tuned for downstream contexts in which
57
+ language models are commonly deployed, such as writing genre prose,
58
+ or commercial chatbots. This means GPT-J-6B will **not**
59
+ respond to a given prompt the way a product like ChatGPT does. This is because,
60
+ unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
61
+ Learning from Human Feedback (RLHF) to better “follow” human instructions.
62
+
63
+ ### Limitations and Biases
64
+
65
+ The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output.
66
+
67
+ GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile.
68
+
69
+ As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
70
+
71
+ ### How to use
72
+
73
+ This model can be easily loaded using the `AutoModelForCausalLM` functionality:
74
+
75
+ ```python
76
+ from transformers import AutoTokenizer, AutoModelForCausalLM
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
79
+ model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
80
+ ```
81
+
82
+ ## Training data
83
+
84
+ GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai).
85
+
86
+ ## Training procedure
87
+
88
+ This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly.
89
+
90
+ ## Evaluation results
91
+
92
+ <figure>
93
+
94
+ | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) |
95
+ |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------|
96
+ | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 |
97
+ | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- |
98
+ | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 |
99
+ | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 |
100
+ | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 |
101
+ | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 |
102
+ | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 |
103
+ | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- |
104
+ | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 |
105
+ | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 |
106
+ | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 |
107
+ | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** |
108
+ | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 |
109
+ | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- |
110
+ | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 |
111
+ | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 |
112
+ | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- |
113
+ <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p>
114
+
115
+ <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by
116
+ running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released
117
+ weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these
118
+ might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more
119
+ details.</p>
120
+
121
+ <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not
122
+ reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a>
123
+ <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>)
124
+ Thus, evaluation was not attempted.</p>
125
+
126
+ <p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models
127
+ failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is
128
+ trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure>
129
+
130
+ ## Citation and Related Information
131
+
132
+ ### BibTeX entry
133
+
134
+ To cite this model:
135
+ ```bibtex
136
+ @misc{gpt-j,
137
+ author = {Wang, Ben and Komatsuzaki, Aran},
138
+ title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
139
+ howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
140
+ year = 2021,
141
+ month = May
142
+ }
143
+ ```
144
+
145
+ To cite the codebase that trained this model:
146
+ ```bibtex
147
+ @misc{mesh-transformer-jax,
148
+ author = {Wang, Ben},
149
+ title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
150
+ howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
151
+ year = 2021,
152
+ month = May
153
+ }
154
+ ```
155
+
156
+ If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email.
157
+
158
+ ## Acknowledgements
159
+
160
+ This project would not have been possible without compute generously provided by Google through the
161
+ [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
162
+
163
+ Thanks to everyone who have helped out one way or another (listed alphabetically):
164
+ - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues.
165
+ - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package.
166
+ - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table.
167
+ - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo.
168
+ - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts.
169
+ - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<|extratoken_14|>": 50270, "<|extratoken_121|>": 50377, "<|extratoken_3|>": 50259, "<|extratoken_25|>": 50281, "<|extratoken_101|>": 50357, "<|extratoken_138|>": 50394, "<|extratoken_10|>": 50266, "<|extratoken_21|>": 50277, "<|extratoken_32|>": 50288, "<|extratoken_46|>": 50302, "<|extratoken_22|>": 50278, "<|extratoken_40|>": 50296, "<|extratoken_96|>": 50352, "<|extratoken_92|>": 50348, "<|extratoken_95|>": 50351, "<|extratoken_141|>": 50397, "<|extratoken_78|>": 50334, "<|extratoken_86|>": 50342, "<|extratoken_56|>": 50312, "<|extratoken_124|>": 50380, "<|extratoken_127|>": 50383, "<|extratoken_122|>": 50378, "<|extratoken_123|>": 50379, "<|extratoken_111|>": 50367, "<|extratoken_93|>": 50349, "<|extratoken_130|>": 50386, "<|extratoken_113|>": 50369, "<|extratoken_50|>": 50306, "<|extratoken_97|>": 50353, "<|extratoken_1|>": 50257, "<|extratoken_55|>": 50311, "<|extratoken_34|>": 50290, "<|extratoken_143|>": 50399, "<|extratoken_62|>": 50318, "<|extratoken_74|>": 50330, "<|extratoken_136|>": 50392, "<|extratoken_117|>": 50373, "<|extratoken_38|>": 50294, "<|extratoken_120|>": 50376, "<|extratoken_39|>": 50295, "<|extratoken_65|>": 50321, "<|extratoken_29|>": 50285, "<|extratoken_104|>": 50360, "<|extratoken_13|>": 50269, "<|extratoken_5|>": 50261, "<|extratoken_107|>": 50363, "<|extratoken_19|>": 50275, "<|extratoken_84|>": 50340, "<|extratoken_77|>": 50333, "<|extratoken_135|>": 50391, "<|extratoken_24|>": 50280, "<|extratoken_134|>": 50390, "<|extratoken_15|>": 50271, "<|extratoken_67|>": 50323, "<|extratoken_89|>": 50345, "<|extratoken_2|>": 50258, "<|extratoken_73|>": 50329, "<|extratoken_129|>": 50385, "<|extratoken_126|>": 50382, "<|extratoken_30|>": 50286, "<|extratoken_41|>": 50297, "<|extratoken_28|>": 50284, "<|extratoken_114|>": 50370, "<|extratoken_128|>": 50384, "<|extratoken_118|>": 50374, "<|extratoken_131|>": 50387, "<|extratoken_68|>": 50324, "<|extratoken_125|>": 50381, "<|extratoken_103|>": 50359, "<|extratoken_8|>": 50264, "<|extratoken_64|>": 50320, "<|extratoken_52|>": 50308, "<|extratoken_45|>": 50301, "<|extratoken_43|>": 50299, "<|extratoken_18|>": 50274, "<|extratoken_139|>": 50395, "<|extratoken_85|>": 50341, "<|extratoken_88|>": 50344, "<|extratoken_63|>": 50319, "<|extratoken_4|>": 50260, "<|extratoken_48|>": 50304, "<|extratoken_112|>": 50368, "<|extratoken_17|>": 50273, "<|extratoken_49|>": 50305, "<|extratoken_108|>": 50364, "<|extratoken_110|>": 50366, "<|extratoken_42|>": 50298, "<|extratoken_70|>": 50326, "<|extratoken_6|>": 50262, "<|extratoken_35|>": 50291, "<|extratoken_23|>": 50279, "<|extratoken_66|>": 50322, "<|extratoken_60|>": 50316, "<|extratoken_71|>": 50327, "<|extratoken_51|>": 50307, "<|extratoken_133|>": 50389, "<|extratoken_20|>": 50276, "<|extratoken_76|>": 50332, "<|extratoken_81|>": 50337, "<|extratoken_142|>": 50398, "<|extratoken_116|>": 50372, "<|extratoken_57|>": 50313, "<|extratoken_75|>": 50331, "<|extratoken_37|>": 50293, "<|extratoken_33|>": 50289, "<|extratoken_16|>": 50272, "<|extratoken_61|>": 50317, "<|extratoken_7|>": 50263, "<|extratoken_12|>": 50268, "<|extratoken_36|>": 50292, "<|extratoken_80|>": 50336, "<|extratoken_98|>": 50354, "<|extratoken_105|>": 50361, "<|extratoken_91|>": 50347, "<|extratoken_53|>": 50309, "<|extratoken_137|>": 50393, "<|extratoken_9|>": 50265, "<|extratoken_79|>": 50335, "<|extratoken_83|>": 50339, "<|extratoken_109|>": 50365, "<|extratoken_99|>": 50355, "<|extratoken_140|>": 50396, "<|extratoken_72|>": 50328, "<|extratoken_11|>": 50267, "<|extratoken_94|>": 50350, "<|extratoken_26|>": 50282, "<|extratoken_59|>": 50315, "<|extratoken_106|>": 50362, "<|extratoken_115|>": 50371, "<|extratoken_58|>": 50314, "<|extratoken_90|>": 50346, "<|extratoken_31|>": 50287, "<|extratoken_102|>": 50358, "<|extratoken_47|>": 50303, "<|extratoken_100|>": 50356, "<|extratoken_82|>": 50338, "<|extratoken_44|>": 50300, "<|extratoken_69|>": 50325, "<|extratoken_54|>": 50310, "<|extratoken_132|>": 50388, "<|extratoken_27|>": 50283, "<|extratoken_87|>": 50343, "<|extratoken_119|>": 50375}
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_new",
3
+ "architectures": [
4
+ "GPTJForCausalLM"
5
+ ],
6
+ "attn_pdrop": 0.0,
7
+ "bos_token_id": 50256,
8
+ "embd_pdrop": 0.0,
9
+ "eos_token_id": 50256,
10
+ "gradient_checkpointing": false,
11
+ "initializer_range": 0.02,
12
+ "layer_norm_epsilon": 1e-05,
13
+ "model_type": "gptj",
14
+ "n_embd": 4096,
15
+ "n_head": 16,
16
+ "n_inner": null,
17
+ "n_layer": 28,
18
+ "n_positions": 2048,
19
+ "resid_pdrop": 0.0,
20
+ "rotary": true,
21
+ "rotary_dim": 64,
22
+ "scale_attn_weights": true,
23
+ "summary_activation": null,
24
+ "summary_first_dropout": 0.1,
25
+ "summary_proj_to_labels": true,
26
+ "summary_type": "cls_index",
27
+ "summary_use_proj": true,
28
+ "task_specific_params": {
29
+ "text-generation": {
30
+ "do_sample": true,
31
+ "max_length": 50,
32
+ "temperature": 1.0
33
+ }
34
+ },
35
+ "tie_word_embeddings": false,
36
+ "tokenizer_class": "GPT2Tokenizer",
37
+ "transformers_version": "4.18.0.dev0",
38
+ "use_cache": true,
39
+ "vocab_size": 50400
40
+ }
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa31d9d4a2187732f82a98705e9ec24ec424335e323420affd8b9c5cd7a73b17
3
+ size 24203541928
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e183edc2025ecfdba4429ba43c960224103b3c3dc26616503cdc2158a3d6c93
3
+ size 24207819307
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}}
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b99958d6ecfdab80e1feaa577a0750e247ed5129984f91d819aeac4bd5c9fb08
3
+ size 24203955064
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "model_max_length": 2048, "special_tokens_map_file": null, "name_or_path": "gpt-j-6B", "from_slow": true, "tokenizer_class": "GPT2Tokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff