File size: 11,267 Bytes
9735e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import random
import datetime
import sys
from agent.agent import SigSpace
import spaces
import gradio as gr
import os
from PIL import Image

import os

os.environ["VLLM_USE_V1"] = "0" # Disable v1 API for now since it does not support logits processors.

# Determine the directory where the current file is located
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


# Create the image path - use absolute path for reliability
img_path = os.path.join(current_dir, 'img', 'SigSpace.png')

def display_image(image_path):
    # Load and return the image
    img = Image.open(image_path)
    return img

DESCRIPTION = f'''
<div style="text-align: center;">
  <h1 style="font-size: 32px; margin-bottom: 10px;">SigSpace: An AI Agent for Tahoe-100M</h1>
</div>
'''
INTRO = """
This is the intro that goes here
"""

LICENSE = """
License goes here
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Agent</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Tips before using Agent:</p>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Please click clear🗑️
 (top-right) to remove previous context before sumbmitting a new question.</p>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Click retry🔄 (below message)  to get multiple versions of the answer.</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
.small-button button {
    font-size: 12px !important;
    padding: 4px 8px !important;
    height: 6px !important;
    width: 4px !important;
}
.gradio-accordion {
    margin-top: 0px !important;
    margin-bottom: 0px !important;
}
"""

chat_css = """
.gr-button { font-size: 20px !important; }  /* Enlarges button icons */
.gr-button svg { width: 32px !important; height: 32px !important; } /* Enlarges SVG icons */
"""

model_name = ''

os.environ["TOKENIZERS_PARALLELISM"] = "false"


question_examples = [
    # ['What is the IC50 values for the drug Abemaciclib in the cell line A549?'],
    ["What's the MoA of the drug Ponatinib on the HCT15 colon cancer cell line? Please synthesize results from the Tahoe-100M dataset, the jump dataset, and the IC50 dataset."],
    ["Natural perturbation: find the disease perturbation that has the similar effect to Glycyrrhizic acid on CVCL_0334? use the result and what you know to explain the mechanism of action."],
    ["Mechanism of action: give me the mechanism of action for drug name Abemaciclib provided by Tahoe."],
    ["Vision scores: what are the top 5 vision scores for cell line A549 and drug name Abemaciclib"]
]

new_tool_files = {
    'new_tool': os.path.join(current_dir, 'data', 'new_tool.json'),
}

config_path = "/home/ubuntu/.lambda_api_config.yaml"
agent = SigSpace(config_path)
# agent.init_model()


def update_model_parameters(enable_finish, enable_rag, enable_summary,
                            init_rag_num, step_rag_num, skip_last_k,
                            summary_mode, summary_skip_last_k, summary_context_length, force_finish, seed):
    # Update model instance parameters dynamically
    updated_params = agent.update_parameters(
        enable_finish=enable_finish,
        enable_rag=enable_rag,
        enable_summary=enable_summary,
        init_rag_num=init_rag_num,
        step_rag_num=step_rag_num,
        skip_last_k=skip_last_k,
        summary_mode=summary_mode,
        summary_skip_last_k=summary_skip_last_k,
        summary_context_length=summary_context_length,
        force_finish=force_finish,
        seed=seed,
    )

    return updated_params


def update_seed():
    # Update model instance parameters dynamically
    seed = random.randint(0, 10000)
    updated_params = agent.update_parameters(
        seed=seed,
    )
    return updated_params


def handle_retry(history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
    print("Updated seed:", update_seed())
    new_history = history[:retry_data.index]
    previous_prompt = history[retry_data.index]['content']

    print("previous_prompt", previous_prompt)

    yield from agent.run_gradio_chat(new_history + [{"role": "user", "content": previous_prompt}], temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round)


PASSWORD = "mypassword"

# Function to check if the password is correct


def check_password(input_password):
    if input_password == PASSWORD:
        return gr.update(visible=True), ""
    else:
        return gr.update(visible=False), "Incorrect password, try again!"


conversation_state = gr.State([])

# Gradio block
chatbot = gr.Chatbot(height=400, placeholder=PLACEHOLDER,
                     label='SigSpace', type="messages",  show_copy_button=True)

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    # gr.Markdown(INTRO)
    gr.Image(value=display_image(img_path), label="", show_label=False, height=600, width=600)
    default_temperature = 0.3
    default_max_new_tokens = 1024
    default_max_tokens = 81920
    default_max_round = 30
    temperature_state = gr.State(value=default_temperature)
    max_new_tokens_state = gr.State(value=default_max_new_tokens)
    max_tokens_state = gr.State(value=default_max_tokens)
    max_round_state = gr.State(value=default_max_round)
    chatbot.retry(handle_retry, chatbot, chatbot, temperature_state, max_new_tokens_state,
                  max_tokens_state, gr.Checkbox(value=False, render=False), conversation_state, max_round_state)

    gr.ChatInterface(
        fn=agent.run_gradio_chat,
        chatbot=chatbot,
        fill_height=False, fill_width=False, stop_btn=True,
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Inference Parameters", open=False, render=False),
        additional_inputs=[
            temperature_state, max_new_tokens_state, max_tokens_state,
            gr.Checkbox(
                label="Activate X", value=False, render=False),
            conversation_state,
            max_round_state,
            gr.Number(label="Seed", value=100, render=False)
        ],
        examples=question_examples,
        cache_examples=False,
        css=chat_css,
    )

    with gr.Accordion("Settings", open=False):

        # Define the sliders
        temperature_slider = gr.Slider(
            minimum=0,
            maximum=1,
            step=0.1,
            value=default_temperature,
            label="Temperature"
        )
        max_new_tokens_slider = gr.Slider(
            minimum=128,
            maximum=4096,
            step=1,
            value=default_max_new_tokens,
            label="Max new tokens"
        )
        max_tokens_slider = gr.Slider(
            minimum=128,
            maximum=32000,
            step=1,
            value=default_max_tokens,
            label="Max tokens"
        )
        max_round_slider = gr.Slider(
            minimum=0,
            maximum=50,
            step=1,
            value=default_max_round,
            label="Max round")

        # Automatically update states when slider values change
        temperature_slider.change(
            lambda x: x, inputs=temperature_slider, outputs=temperature_state)
        max_new_tokens_slider.change(
            lambda x: x, inputs=max_new_tokens_slider, outputs=max_new_tokens_state)
        max_tokens_slider.change(
            lambda x: x, inputs=max_tokens_slider, outputs=max_tokens_state)
        max_round_slider.change(
            lambda x: x, inputs=max_round_slider, outputs=max_round_state)

        # password_input = gr.Textbox(
        #     label="Enter Password for More Settings", type="password")
        # incorrect_message = gr.Textbox(visible=False, interactive=False)
        # with gr.Accordion("⚙️ Settings", open=False, visible=False) as protected_accordion:
        #     with gr.Row():
        #         with gr.Column(scale=1):
        #             with gr.Accordion("⚙️ Model Loading", open=False):
        #                 model_name_input = gr.Textbox(
        #                     label="Enter model path", value=model_name)
        #                 load_model_btn = gr.Button(value="Load Model")
        #                 load_model_btn.click(
        #                     agent.load_models, inputs=model_name_input, outputs=gr.Textbox(label="Status"))
        #         with gr.Column(scale=1):
        #             with gr.Accordion("⚙️ Functional Parameters", open=False):
        #                 # Create Gradio components for parameter inputs
        #                 enable_finish = gr.Checkbox(
        #                     label="Enable Finish", value=True)
        #                 enable_rag = gr.Checkbox(
        #                     label="Enable RAG", value=True)
        #                 enable_summary = gr.Checkbox(
        #                     label="Enable Summary", value=False)
        #                 init_rag_num = gr.Number(
        #                     label="Initial RAG Num", value=0)
        #                 step_rag_num = gr.Number(
        #                     label="Step RAG Num", value=10)
        #                 skip_last_k = gr.Number(label="Skip Last K", value=0)
        #                 summary_mode = gr.Textbox(
        #                     label="Summary Mode", value='step')
        #                 summary_skip_last_k = gr.Number(
        #                     label="Summary Skip Last K", value=0)
        #                 summary_context_length = gr.Number(
        #                     label="Summary Context Length", value=None)
        #                 force_finish = gr.Checkbox(
        #                     label="Force FinalAnswer", value=True)
        #                 seed = gr.Number(label="Seed", value=100)
        #                 # Button to submit and update parameters
        #                 submit_btn = gr.Button("Update Parameters")

        #                 # Display the updated parameters
        #                 updated_parameters_output = gr.JSON()

        #                 # When button is clicked, update parameters
        #                 submit_btn.click(fn=update_model_parameters,
        #                                  inputs=[enable_finish, enable_rag, enable_summary, init_rag_num, step_rag_num, skip_last_k,
        #                                          summary_mode, summary_skip_last_k, summary_context_length, force_finish, seed],
        #                                  outputs=updated_parameters_output)
        # Button to submit the password
        # submit_button = gr.Button("Submit")

        # # When the button is clicked, check if the password is correct
        # submit_button.click(
        #     check_password,
        #     inputs=password_input,
        #     outputs=[protected_accordion, incorrect_message]
        # )
    gr.Markdown(LICENSE)


if __name__ == "__main__":
    demo.launch(share=True)