File size: 31,752 Bytes
9735e01 327881b 9735e01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
from agent.utils import *
from agent.prompt import *
import anndata
import gradio as gr
from gradio import ChatMessage
import re
import pandas as pd
import pathlib
import numpy as np
class SigSpace(Basic_Agent):
def __init__(self, config_path:str):
super().__init__(config_path)
self.conversation = []
self.system_prompt = Agent_Prompt
self.conversation = []
self.conversation.append({"role": "system", "content": self.system_prompt})
# initialize data path
# path = pathlib.Path("/home/ubuntu/giovanni/code/Tahoe_Hackathon/datasets") # on lambda
path = pathlib.Path("data")
# jump_path = pathlib.Path("/home/ubuntu/giovanni/data")
self.jump_tahoe_drug_metadata = pd.read_csv(path/"drug_metadata_inchikey.csv")
self.jump_similarity_score = pd.read_csv(path/"compound_genetic_perturbation_cosine_similarity_inchikey.csv")
# Load PRISM IC50 matrix
# prism_data_path = pathlib.Path("/home/ubuntu/sid/Hackathon_Tahoe/data")
self.ic50 = pd.read_csv(path / "Tahoe_PRISM_cell_by_drug_ic50_matrix_named.csv", index_col=0)
self.ic50.columns = self.ic50.columns.str.lower()
# nci60_path = pathlib.Path("/home/ubuntu/ishita/tahoe/")
self.lc50 = pd.read_csv(path / "filtered_results.csv")
# Filter out rows where CELL is nan
self.lc50 = self.lc50[self.lc50['CELL'].notna()]
# Load full Tahoe metadata
# tahoe_path = pathlib.Path("/home/ubuntu/rohit/data")
self.tahoe_cell_meta = pd.read_csv(path / "cell_line_metadata.csv")
self.tahoe_drug_meta = pd.read_csv(path / "drug_metadata.csv")
self.tahoe_vision_scores = anndata.read_h5ad(path / "tahoe_vision_scores.h5ad")
# Load PRISM subset of Tahoe metadata
self.prism_tahoe_cell_meta = pd.read_csv(path / "Tahoe_PRISM_matched_cell_metadata_final.csv")
self.prism_tahoe_drug_meta = pd.read_csv(path / "Tahoe_PRISM_matched_drug_metadata_final.csv")
# Build cell line common name to depmap_id map (strip whitespace and case)
self.cell_name_to_depmap = {
row["cell_name"].strip(): row["Cell_ID_DepMap"]
for _, row in self.prism_tahoe_cell_meta.iterrows()
}
self.cell_name_to_depmap_lc50 = {
row["clean"].strip(): row["cell_line_name"]
for _, row in self.lc50.iterrows()
}
self.tahoe_similarity_score = pd.read_csv(path / "in_tahoe_search_result_df.csv")
self.tahoe_cxg_similarity_score = pd.read_csv(path / "cxg_search_result_df.csv")
def initialize_conversation(self, message, conversation=None, history=None):
if conversation is None:
conversation = []
conversation.append({"role": "system", "content" : Agent_Prompt})
if history is not None:
if len(history) == 0:
conversation = []
print("clear conversation successfully")
else:
for i in range(len(history)):
if history[i]['role'] == 'user':
if i-1 >= 0 and history[i-1]['role'] == 'assistant':
conversation.append(
{"role": "assistant", "content": history[i-1]['content']})
conversation.append(
{"role": "user", "content": history[i]['content']})
if i == len(history)-1 and history[i]['role'] == 'assistant':
conversation.append(
{"role": "assistant", "content": history[i]['content']})
conversation.append({"role": "user", "content": message})
return conversation
def get_similar_disease(self, disease_name, k_value):
if disease_name != "Alzheimer's":
return "FAIL"
return 'Parkinsons Disease'
def get_validated_target_jump(self, drug_name):
print(drug_name)
try:
inchikey = self.jump_tahoe_drug_metadata[self.jump_tahoe_drug_metadata.drug.isin([drug_name])]["InChIKey"].values[0]
similarity_scores = self.jump_similarity_score[self.jump_similarity_score.InChIKey.isin([inchikey])]
# Count ORF entries with cosine_similarity > 0.2 and < -0.2
orf_positive = similarity_scores[(similarity_scores.Genetic_Perturbation == 'ORF') & (similarity_scores.cosine_sim > 0.2)].shape[0]
orf_negative = similarity_scores[(similarity_scores.Genetic_Perturbation == 'ORF') & (similarity_scores.cosine_sim < -0.2)].shape[0]
# Count CRISPR entries with cosine_similarity > 0.2 and < -0.2
crispr_positive = similarity_scores[(similarity_scores.Genetic_Perturbation == 'CRISPR') & (similarity_scores.cosine_sim > 0.2)].shape[0]
crispr_negative = similarity_scores[(similarity_scores.Genetic_Perturbation == 'CRISPR') & (similarity_scores.cosine_sim < -0.2)].shape[0]
orf_targets = f"ORF: {orf_positive} positive correlations (>0.2), {orf_negative} negative correlations (<-0.2)"
crispr_targets = f"CRISPR: {crispr_positive} positive correlations (>0.2), {crispr_negative} negative correlations (<-0.2)"
orf_crispr_targets = orf_targets + " " +crispr_targets
known_targets_from_jump = self.jump_tahoe_drug_metadata[self.jump_tahoe_drug_metadata.drug.isin([drug_name])]["target_list"].values[0]
known_targets_output = f"The known targets from the JUMP dataset are: {', '.join(known_targets_from_jump.split('|'))}"
except Exception as e:
print(e)
return "For the drug {drug_name}, we were not able to find the target in the JUMP dataset."
orf_crispr_targets = \
f"""
Preturbation description:
ORF: The ORF perturbation consists of an overexpression of the target gene.
CRISPR: The CRISPR perturbation consists of a knockout of the target gene.
Considering the drug "{drug_name}", we expect positive correlations with shared CRISPR targets,
and negative correlations with shared ORF targets.
But, the measured correlations are:
{orf_crispr_targets}
Furthermore, the JUMP dataset has the following known targets for the drug "{drug_name}":
{known_targets_output}
"""
return orf_crispr_targets
def get_similar_drug_effect_in_tahoe(self, cell_line_name: str, drug_name: str):
"""
Get similar effect drugs in tahoe based on the drug name and cell line name.
Args:
cell_line_name (str): The name of the cell line.
drug_name (str): The name of the drug.
"""
cell_line_names = self.tahoe_similarity_score["source_cell_line"].unique().tolist()
drug_names = self.tahoe_similarity_score["source_drug_name"].unique().tolist()
if cell_line_name not in cell_line_names:
return "FAIL: Cell line name not found in the dataset. A example: CVCL_0218"
if drug_name not in drug_names:
return "FAIL: Drug name not found in the dataset. A example: Daptomycin"
hits = self.tahoe_similarity_score[
(self.tahoe_similarity_score["source_cell_line"] == cell_line_name) &
(self.tahoe_similarity_score["source_drug_name"] == drug_name)
]
# sort by distance
hits = hits.sort_values(by="distance", ascending=True).reset_index(drop=True)
hits = hits.head(10)
# keep target_drug_name and target_cell_line
hits = hits[["target_drug_name", "target_cell_line",]]
outputs = f"""
The following drugs have similar effects to the drug you provided:
hits:
{hits}
"""
return outputs
def get_similar_drug_effects_in_cxg(self, cell_line_name: str, drug_name: str):
"""
Get similar effect diseases in cxg based on the drug name and cell line name.
Args:
cell_line_name (str): The name of the cell line.
drug_name (str): The name of the drug.
"""
cell_line_names = self.tahoe_cxg_similarity_score["cell_line"].unique().tolist()
drug_names = self.tahoe_cxg_similarity_score["perturbation_drug_name"].unique().tolist()
if cell_line_name not in cell_line_names:
return "FAIL: Cell line name not found in the dataset. A valid example: CVCL_0218"
if drug_name not in drug_names:
return "FAIL: Drug name not found in the dataset. A valid example:: Daptomycin"
hits = self.tahoe_cxg_similarity_score[
(self.tahoe_cxg_similarity_score["cell_line"] == cell_line_name) &
(self.tahoe_cxg_similarity_score["perturbation_drug_name"] == drug_name)
]
hits = hits.sort_values(by="distance", ascending=True).reset_index(drop=True)
hits = hits.head(10)
# keeps cell_type tissue_type and disease
hits = hits[["cell_type", "tissue_type", "disease"]]
outputs = f"""
The following diseases have similar effects to the drug you provided:
hits:
{hits}
"""
return outputs
def get_ic50_prism(self, drug_name: str, cell_line_name: str):
drug_name_lower = drug_name.strip().lower()
cell_line_key = cell_line_name.strip()
if cell_line_key not in self.cell_name_to_depmap:
print(f"Cell line name '{cell_line_key}' not found for PRISM data")
return f"FAIL: Cell line name '{cell_line_key}' not found for PRISM data"
depmap_id = self.cell_name_to_depmap[cell_line_key]
if drug_name_lower not in self.ic50.columns:
print(f"Drug name '{drug_name}' not found in IC50 matrix columns.")
return f"FAIL: Drug name '{drug_name}' not found in IC50 matrix columns."
try:
ic50_val = self.ic50.loc[depmap_id, drug_name_lower]
if pd.isna(ic50_val):
print(f"FAIL: IC50 value is missing for '{drug_name}' in cell line '{cell_line_name}' (DepMap ID: {depmap_id}).")
return f"FAIL: IC50 value is missing for '{drug_name}' in cell line '{cell_line_name}' (DepMap ID: {depmap_id})."
return (
f"The IC50 value of {ic50_val:.4f} corresponds to the log10-transformed micromolar concentration "
f"at which {drug_name} inhibits 50% of viability in the {cell_line_name} cell line "
f"(DepMap ID: {depmap_id}).\n\n"
"This value comes from the PRISM Repurposing Secondary Screen, which exposes pooled barcoded cell lines "
"to drug treatment for 5 days and infers viability from barcode abundance using sequencing.\n\n"
"The secondary screen includes higher-confidence compound–cell line pairs with improved replicability "
"compared to the primary screen.\n\n"
"Lower IC50 values indicate greater sensitivity of the cell line to the drug."
)
except KeyError as e:
print(f"Combination not found: {e}")
return None
def clean_cell_line_name(self, name):
"""
Standardize cell line names for comparison by:
1. Converting to string (handles any non-string values)
2. Converting to uppercase
3. Removing all non-alphanumeric characters
Args:
name: Cell line name (string or other type)
Returns:
Cleaned string with only uppercase letters and numbers
"""
return re.sub(r"[^A-Z0-9]", "", str(name).upper())
def get_lc50_nci60(self, drug_name: str, cell_line_name: str):
cell_line_name = cell_line_name.upper()
cell_line_key = self.clean_cell_line_name(cell_line_name)
if cell_line_key not in self.cell_name_to_depmap_lc50:
print(f"Cell line name '{cell_line_key}' not found for NCI60 data")
return None
depmap_id = self.cell_name_to_depmap_lc50[cell_line_key]
print ("Depmap_id", depmap_id)
# Find the drug in NCI60 dataset
# Since drugs are in uppercase in the list, convert search term to uppercase
drug_name_upper = drug_name.strip().upper()
# Filter rows where the drug name is in the drug column
# This assumes drugs in each row are comma-separated or in a format that can be searched
matching_row = self.lc50[self.lc50['drug'].str.contains(drug_name_upper, na=False)]
print ("Matching row", matching_row)
if matching_row.empty:
print(f"Drug name '{drug_name}' not found in NCI60 dataset.")
return None
if matching_row.empty:
raise ValueError(f"Multiple matches found for drug '{drug_name}' in NCI60 dataset.")
print ("Matching row", matching_row)
# Get the LC50 value from the matching row
lc50_val = matching_row.iloc[0]['NLOGLC50']
lconc_val = matching_row.iloc[0]['LCONC']
if pd.isna(lc50_val):
return "LC50 value is missing for '{drug_name}' in cell line '{cell_line_name}' (depmap_id: {depmap_id})."
lc50_output = \
f"""
The LC50 value of {lc50_val} represents -log10(LC50), the negative base-10 logarithm of the molar concentration that inhibits 50% of cell growth.
Higher LC50 values therefore indicate greater drug potency.
The LCONC value of {lconc_val} denotes the maximum log10 molar concentration tested in the dilution series—for example, LCONC = -4 corresponds to 10^-4 M.
Both metrics come from the NCI-60 drug screen, which applies a standardized 48-hour exposure assay across all compound–cell-line pairs."
"""
return lc50_output
def load_gene_sets_file(self, file_path):
"""
Load gene sets from a tab-delimited file where the first column is the gene set name
and the remaining columns are gene symbols.
Parameters:
-----------
file_path : str
Path to the gene sets file
Returns:
--------
dict
Dictionary mapping gene set names to lists of genes
"""
gene_sets = {}
with open(file_path, 'r') as file:
for line in file:
parts = line.strip().split('\t')
if parts:
set_name = parts[0]
genes = [gene for gene in parts[1:] if gene] # Filter out empty strings
gene_sets[set_name] = genes
return gene_sets
def get_genes_for_set(self, set_name):
"""
Get the list of genes for a specific gene set.
Parameters:
-----------
set_name : str
Name of the gene set to query
Returns:
--------
list
List of genes in the gene set, or empty list if set not found
"""
if not hasattr(self, 'gene_sets'):
# Load the gene sets file if it hasn't been loaded yet
self.gene_sets = self.load_gene_sets_file('/home/ubuntu/ishita/msigdb_all_sigs_human_symbols.txt')
return self.gene_sets.get(set_name, [])
def rank_vision_scores(self, drug_name: str, cell_line_name: str, k_value: int):
self.tahoe_vision_scores.X = (self.tahoe_vision_scores.X - np.mean(self.tahoe_vision_scores.X, axis = 0)) / np.std(self.tahoe_vision_scores.X, axis = 0)
# subset to the drug / cell line at the highest tested concentration
filt = (
(self.tahoe_vision_scores.obs["Cell_Name_Vevo"] == cell_line_name)
& (self.tahoe_vision_scores.obs["drug"] == drug_name)
)
filtered_scores = self.tahoe_vision_scores[filt]
if filtered_scores.n_obs == 0:
return "VISION scores not found for this drug–cell-line combination."
filtered_scores = filtered_scores[
filtered_scores.obs["concentration"] == filtered_scores.obs["concentration"].max()
]
# pick top-|score| gene sets
top_idx = np.argsort(-np.abs(filtered_scores.X[0]))[:k_value]
gene_sets = filtered_scores.var.index[top_idx].tolist()
scores = filtered_scores.X[0, top_idx].tolist()
# build the narrative
header = (
"VISION scores are single-cell gene-set enrichment values computed by the "
"VISION algorithm (DeTomaso & Yosef 2021). Positive scores indicate relative "
"up-regulation of the gene set in the queried condition; negative scores indicate "
"down-regulation.\n"
)
lines = []
for gs, val in zip(gene_sets, scores):
gs_name = gs.replace("gs_", "")
genes = self.get_genes_for_set(gs_name)
direction = "up-regulated" if val > 0 else "down-regulated" if val < 0 else "not changed"
lines.append(f"{gs} has gene set {genes} : {direction} (VISION score = {val:.3f})")
return header + "\n".join(lines)
def obtain_moa(self, drug_name: str):
row = self.tahoe_drug_meta[self.tahoe_drug_meta["drug"] == drug_name]
if row.empty:
return "MOA annotation not found for this drug."
moa_broad = row["moa-broad"].values[0]
moa_fine = row["moa-fine"].values[0]
return (
f"Broad MOA: {moa_broad}; "
f"Fine MOA: {moa_fine}. "
"Fine-grained mechanism of action (MOA) annotation for the drug, "
"specifying the biological process or molecular target affected. "
"Derived from MedChemExpress and curated with GPT-based annotations."
)
def obtain_gene_targets(self, drug_name: str):
row = self.tahoe_drug_meta[self.tahoe_drug_meta["drug"] == drug_name]
if row.empty:
return "Gene targets not found for this drug."
targets = row["targets"].values[0]
# Convert a stringified list/dict to a Python object, if necessary.
if isinstance(targets, str):
try:
targets = eval(targets)
except Exception: # fall back to treating it as a single ID
targets = [targets]
return (
f"Gene target token IDs: {targets}. "
"Gene identifiers (integer token IDs) corresponding to each gene with non-zero expression in the cell."
)
def obtain_cell_line_data(self, cell_line_name: str):
row = self.tahoe_cell_meta[self.tahoe_cell_meta["cell_name"] == cell_line_name]
if row.empty:
return "Cell-line metadata not found for this cell line."
organ = row["Organ"].values[0]
driver_gene_symbol = row["Driver_Gene_Symbol"].values[0]
driver_varzyg = row["Driver_VarZyg"].values[0]
driver_vartype = row["Driver_VarType"].values[0]
driver_proteffect = row["Driver_ProtEffect_or_CdnaEffect"].values[0]
driver_mech_inferdm = row["Driver_Mech_InferDM"].values[0]
driver_genetype_dm = row["Driver_GeneType_DM"].values[0]
return (
f"Organ: {organ}; "
f"Driver_Gene_Symbol: {driver_gene_symbol}; "
f"Driver_VarZyg: {driver_varzyg}; "
f"Driver_VarType: {driver_vartype}; "
f"Driver_ProtEffect_or_CdnaEffect: {driver_proteffect}; "
f"Driver_Mech_InferDM: {driver_mech_inferdm}; "
f"Driver_GeneType_DM: {driver_genetype_dm}. "
"Organ = tissue or organ of origin for the cell line (e.g., Lung), used to interpret lineage-specific responses. "
"Driver_Gene_Symbol = HGNC-approved symbol of a driver gene with functional alterations in this cell line. "
"Driver_VarZyg = zygosity of the driver variant (Hom = homozygous, Het = heterozygous). "
"Driver_VarType = type of genetic alteration (e.g., Missense, Frameshift, Stopgain). "
"Driver_ProtEffect_or_CdnaEffect = precise protein or cDNA-level annotation of the mutation (e.g., p.G12S). "
"Driver_Mech_InferDM = inferred functional mechanism (LoF = loss-of-function, GoF = gain-of-function). "
"Driver_GeneType_DM = classification of the driver gene as an Oncogene or Suppressor."
)
def run_gradio_chat(self, message: str,
history: list,
temperature: float,
max_new_tokens: int,
max_token: int,
call_agent: bool,
conversation: gr.State,
max_round: int = 20,
seed: int = None,
call_agent_level: int = 0,
sub_agent_task: str = None):
print("\033[1;32;40mstart\033[0m")
print("len(message)", len(message))
if len(message) <= 10:
yield "Hi, I am Agent, an assistant for answering biomedical questions. Please provide a valid message with a string longer than 10 characters."
return "Please provide a valid message."
outputs = []
outputs_str = ''
last_outputs = []
conversation = self.initialize_conversation(
message,
conversation=conversation,
history=history)
history = []
next_round = True
function_call_messages = []
current_round = 0
enable_summary = False
last_status = {} # for summary
token_overflow = False
# if self.enable_checker:
# checker = ReasoningTraceChecker(
# message, conversation, init_index=len(conversation))
# try:
self.conversation.append({"role": "user", "content": message})
while next_round and current_round < max_round:
current_round += 1
response = self.llm_infer(self.conversation)
self.conversation.append({"role": "system", "content": response})
tool_called = False
print(response)
# import pdb; pdb.set_trace()
if 'Tool-call:' in response:
match = re.search(r"Tool-call:\s*(.*)", response, re.DOTALL)
response_text = match.group(1).strip()
if "None" not in response_text and response_text.replace('-', '').rstrip().replace('FINISHED', '').rstrip():
history.append(ChatMessage(
role="assistant", content=f"{response.replace('FINISHED', '').split('</think>')[1]}"))
yield history
tool_called = True
print(response_text)
if "FAIL" in response_text:
self.conversation.append({"role": "system", "content": tool_response})
history.append(
ChatMessage(role="assistant", content=f"Response from tool FAILED ")
)
next_round = False
yield history
else:
tool_call_text = response_text
if ';' in tool_call_text:
tool_calls = [i.replace('\n', '').rstrip('-').replace('FINISHED', '').replace('Response:', '') for i in tool_call_text.split(';') if i]
elif '\n' in tool_call_text:
tool_calls = [i.replace('\n', '').rstrip('-').replace('FINISHED', '').replace('Response:', '') for i in tool_call_text.split('\n') if i]
else:
tool_calls = [tool_call_text]
tool_calls = [i.rstrip('-') for i in tool_calls if i]
for call in tool_calls:
print(f"\033[1;34;40mCalling this command now {call}\033[0m")
tool_response = str(eval(call))
self.conversation.append({"role": "system", "content": tool_response})
history.append(
ChatMessage(role="assistant", content=f"Response from tool: {tool_response}")
)
print(f"\033[1;34;40mGot this response {tool_response}\033[0m")
yield history
else:
history.append(
ChatMessage(role="assistant", content=f"{response}")
)
yield history
elif 'Response:' in response or tool_called is False:
match = re.search(r"Response:\s*(.*)", response, re.DOTALL)
response_text = match.group(1).strip().replace('Tool-call: None', '')
print(f"\033[1;33;40mresponse text: {response_text}\033[0m")
history.append(
ChatMessage(
role="assistant", content=f"{response_text.replace('FINISHED', '')}")
)
yield history
if 'FINISHED' in response and tool_called is False:
next_round = False
# if len(last_outputs) > 0:
# function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
# last_outputs, return_message=True,
# existing_tools_prompt=picked_tools_prompt,
# message_for_call_agent=message,
# call_agent=call_agent,
# call_agent_level=call_agent_level,
# temperature=temperature)
# history.extend(current_gradio_history)
# if special_tool_call == 'Finish':
# yield history
# next_round = False
# conversation.extend(function_call_messages)
# return function_call_messages[0]['content']
# elif special_tool_call == 'RequireClarification' or special_tool_call == 'DirectResponse':
# history.append(
# ChatMessage(role="assistant", content=history[-1].content))
# yield history
# next_round = False
# return history[-1].content
# if (self.enable_summary or token_overflow) and not call_agent:
# if token_overflow:
# print("token_overflow, using summary")
# enable_summary = True
# last_status = self.function_result_summary(
# conversation, status=last_status,
# enable_summary=enable_summary)
# if function_call_messages is not None:
# conversation.extend(function_call_messages)
# formated_md_function_call_messages = tool_result_format(
# function_call_messages)
# yield history
# else:
# next_round = False
# conversation.extend(
# [{"role": "assistant", "content": ''.join(last_outputs)}])
# return ''.join(last_outputs).replace("</s>", "")
# # if self.enable_checker:
# # good_status, wrong_info = checker.check_conversation()
# # if not good_status:
# # next_round = False
# # print("Internal error in reasoning: " + wrong_info)
# # break
# last_outputs = []
# last_outputs_str, token_overflow = self.llm_infer(
# messages=conversation,
# temperature=temperature,
# tools=picked_tools_prompt,
# skip_special_tokens=False,
# max_new_tokens=max_new_tokens,
# max_token=max_token,
# seed=seed,
# check_token_status=True)
# last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
# for each in history:
# if each.metadata is not None:
# each.metadata['status'] = 'done'
# if '[FinalAnswer]' in last_thought:
# final_thought, final_answer = last_thought.split(
# '[FinalAnswer]')
# history.append(
# ChatMessage(role="assistant",
# content=final_thought.strip())
# )
# yield history
# history.append(
# ChatMessage(
# role="assistant", content="**Answer**:\n"+final_answer.strip())
# )
# yield history
# else:
# history.append(ChatMessage(
# role="assistant", content=last_thought))
# yield history
# last_outputs.append(last_outputs_str)
# if self.force_finish:
# last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
# conversation, temperature, max_new_tokens, max_token, return_full_thought=True)
# for each in history:
# if each.metadata is not None:
# each.metadata['status'] = 'done'
# final_thought, final_answer = last_outputs_str.split('[FinalAnswer]')
# history.append(
# ChatMessage(role="assistant",
# content=final_thought.strip())
# )
# yield history
# history.append(
# ChatMessage(
# role="assistant", content="**Answer**:\n"+final_answer.strip())
# )
# yield history
# else:
# yield "The number of rounds exceeds the maximum limit!"
# except Exception as e:
# print(f"Error: {e}")
# if self.force_finish:
# last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
# conversation,
# temperature,
# max_new_tokens,
# max_token,
# return_full_thought=True)
# for each in history:
# if each.metadata is not None:
# each.metadata['status'] = 'done'
# final_thought, final_answer = last_outputs_str.split(
# '[FinalAnswer]')
# history.append(
# ChatMessage(role="assistant",
# content=final_thought.strip())
# )
# yield history
# history.append(
# ChatMessage(
# role="assistant", content="**Answer**:\n"+final_answer.strip())
# )
# yield history
# else:
# return None |