File size: 31,752 Bytes
9735e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327881b
 
 
9735e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
from agent.utils import *
from agent.prompt import *
import anndata
import gradio as gr
from gradio import ChatMessage
import re
import pandas as pd
import pathlib
import numpy as np

class SigSpace(Basic_Agent):
    def __init__(self, config_path:str):
        super().__init__(config_path)
        self.conversation = []
        self.system_prompt = Agent_Prompt
        self.conversation = []
        self.conversation.append({"role": "system", "content": self.system_prompt})
        
        # initialize data path
        # path = pathlib.Path("/home/ubuntu/giovanni/code/Tahoe_Hackathon/datasets") # on lambda
        path = pathlib.Path("data")
        # jump_path = pathlib.Path("/home/ubuntu/giovanni/data")
        self.jump_tahoe_drug_metadata = pd.read_csv(path/"drug_metadata_inchikey.csv")
        self.jump_similarity_score = pd.read_csv(path/"compound_genetic_perturbation_cosine_similarity_inchikey.csv")
        
        # Load PRISM IC50 matrix
        # prism_data_path = pathlib.Path("/home/ubuntu/sid/Hackathon_Tahoe/data")
        self.ic50 = pd.read_csv(path / "Tahoe_PRISM_cell_by_drug_ic50_matrix_named.csv", index_col=0)
        self.ic50.columns = self.ic50.columns.str.lower()

        # nci60_path = pathlib.Path("/home/ubuntu/ishita/tahoe/")
        self.lc50 = pd.read_csv(path / "filtered_results.csv")
        # Filter out rows where CELL is nan
        self.lc50 = self.lc50[self.lc50['CELL'].notna()]

        # Load full Tahoe metadata
        # tahoe_path = pathlib.Path("/home/ubuntu/rohit/data")
        self.tahoe_cell_meta = pd.read_csv(path / "cell_line_metadata.csv")
        self.tahoe_drug_meta = pd.read_csv(path / "drug_metadata.csv")
        self.tahoe_vision_scores = anndata.read_h5ad(path / "tahoe_vision_scores.h5ad")
        
        # Load PRISM subset of Tahoe metadata
        self.prism_tahoe_cell_meta = pd.read_csv(path / "Tahoe_PRISM_matched_cell_metadata_final.csv")
        self.prism_tahoe_drug_meta = pd.read_csv(path / "Tahoe_PRISM_matched_drug_metadata_final.csv")

        # Build cell line common name to depmap_id map (strip whitespace and case)
        self.cell_name_to_depmap = {
            row["cell_name"].strip(): row["Cell_ID_DepMap"]
            for _, row in self.prism_tahoe_cell_meta.iterrows()
        }

        self.cell_name_to_depmap_lc50 = {
            row["clean"].strip(): row["cell_line_name"]
            for _, row in self.lc50.iterrows()
        }

        self.tahoe_similarity_score = pd.read_csv(path / "in_tahoe_search_result_df.csv")
        self.tahoe_cxg_similarity_score = pd.read_csv(path / "cxg_search_result_df.csv")

    
    def initialize_conversation(self, message, conversation=None, history=None):
        if conversation is None:
            conversation = []

        conversation.append({"role": "system", "content" : Agent_Prompt})
        
        if history is not None:
            if len(history) == 0:
                conversation = []
                print("clear conversation successfully")
            else:
                for i in range(len(history)):
                    if history[i]['role'] == 'user':
                        if i-1 >= 0 and history[i-1]['role'] == 'assistant':
                            conversation.append(
                                {"role": "assistant", "content": history[i-1]['content']})
                        conversation.append(
                            {"role": "user", "content": history[i]['content']})
                    if i == len(history)-1 and history[i]['role'] == 'assistant':
                        conversation.append(
                            {"role": "assistant", "content": history[i]['content']})

        conversation.append({"role": "user", "content": message})

        return conversation

    def get_similar_disease(self, disease_name, k_value):
        if disease_name != "Alzheimer's":
            return "FAIL"
        return 'Parkinsons Disease'

    def get_validated_target_jump(self, drug_name):
        print(drug_name)
        try:
            inchikey = self.jump_tahoe_drug_metadata[self.jump_tahoe_drug_metadata.drug.isin([drug_name])]["InChIKey"].values[0]
            similarity_scores = self.jump_similarity_score[self.jump_similarity_score.InChIKey.isin([inchikey])]

            # Count ORF entries with cosine_similarity > 0.2 and < -0.2
            orf_positive = similarity_scores[(similarity_scores.Genetic_Perturbation == 'ORF') & (similarity_scores.cosine_sim > 0.2)].shape[0]
            orf_negative = similarity_scores[(similarity_scores.Genetic_Perturbation == 'ORF') & (similarity_scores.cosine_sim < -0.2)].shape[0]

            # Count CRISPR entries with cosine_similarity > 0.2 and < -0.2
            crispr_positive = similarity_scores[(similarity_scores.Genetic_Perturbation == 'CRISPR') & (similarity_scores.cosine_sim > 0.2)].shape[0]
            crispr_negative = similarity_scores[(similarity_scores.Genetic_Perturbation == 'CRISPR') & (similarity_scores.cosine_sim < -0.2)].shape[0]

            orf_targets = f"ORF: {orf_positive} positive correlations (>0.2), {orf_negative} negative correlations (<-0.2)"
            crispr_targets = f"CRISPR: {crispr_positive} positive correlations (>0.2), {crispr_negative} negative correlations (<-0.2)"

            orf_crispr_targets = orf_targets + " " +crispr_targets

            known_targets_from_jump = self.jump_tahoe_drug_metadata[self.jump_tahoe_drug_metadata.drug.isin([drug_name])]["target_list"].values[0]
            known_targets_output = f"The known targets from the JUMP dataset are: {', '.join(known_targets_from_jump.split('|'))}"
        except Exception as e:
            print(e)
            return "For the drug {drug_name}, we were not able to find the target in the JUMP dataset."
        
        orf_crispr_targets = \
        f"""
        Preturbation description:

        ORF: The ORF perturbation consists of an overexpression of the target gene.
        CRISPR: The CRISPR perturbation consists of a knockout of the target gene.

        Considering the drug "{drug_name}", we expect positive correlations with shared CRISPR targets, 
        and negative correlations with shared ORF targets.
        
        But, the measured correlations are:

        {orf_crispr_targets}

        Furthermore, the JUMP dataset has the following known targets for the drug "{drug_name}":

        {known_targets_output}
        """ 
        return orf_crispr_targets
    
    def get_similar_drug_effect_in_tahoe(self, cell_line_name: str, drug_name: str):
        """
        Get similar effect drugs in tahoe based on the drug name and cell line name.
        
        Args:
            cell_line_name (str): The name of the cell line.
            drug_name (str): The name of the drug.
        """
        cell_line_names = self.tahoe_similarity_score["source_cell_line"].unique().tolist()
        drug_names = self.tahoe_similarity_score["source_drug_name"].unique().tolist()
        if cell_line_name not in cell_line_names:
            return "FAIL: Cell line name not found in the dataset. A example: CVCL_0218"
        if drug_name not in drug_names:
            return "FAIL: Drug name not found in the dataset. A example: Daptomycin"
        hits = self.tahoe_similarity_score[
            (self.tahoe_similarity_score["source_cell_line"] == cell_line_name) &
            (self.tahoe_similarity_score["source_drug_name"] == drug_name)
        ]
        # sort by distance
        hits = hits.sort_values(by="distance", ascending=True).reset_index(drop=True)
        hits = hits.head(10)
        # keep target_drug_name and target_cell_line
        hits = hits[["target_drug_name", "target_cell_line",]]
        outputs = f"""
        The following drugs have similar effects to the drug you provided:
        hits: 
        {hits}
        """
        return outputs
    
    def get_similar_drug_effects_in_cxg(self, cell_line_name: str, drug_name: str):
        """
        Get similar effect diseases in cxg based on the drug name and cell line name.
        
        Args:
            cell_line_name (str): The name of the cell line.
            drug_name (str): The name of the drug.
        """
        cell_line_names = self.tahoe_cxg_similarity_score["cell_line"].unique().tolist()
        drug_names = self.tahoe_cxg_similarity_score["perturbation_drug_name"].unique().tolist()
        if cell_line_name not in cell_line_names:
            return "FAIL: Cell line name not found in the dataset. A valid example: CVCL_0218"
        if drug_name not in drug_names:
            return "FAIL: Drug name not found in the dataset. A valid example:: Daptomycin"
        hits = self.tahoe_cxg_similarity_score[
            (self.tahoe_cxg_similarity_score["cell_line"] == cell_line_name) &
            (self.tahoe_cxg_similarity_score["perturbation_drug_name"] == drug_name)
        ]
        hits = hits.sort_values(by="distance", ascending=True).reset_index(drop=True)
        hits = hits.head(10)
        # keeps cell_type tissue_type and disease	
        hits = hits[["cell_type", "tissue_type", "disease"]]
        outputs = f"""
        The following diseases have similar effects to the drug you provided:
        hits: 
        {hits}
        """
        return outputs

    def get_ic50_prism(self, drug_name: str, cell_line_name: str):
        drug_name_lower = drug_name.strip().lower()
        cell_line_key = cell_line_name.strip()

        if cell_line_key not in self.cell_name_to_depmap:
            print(f"Cell line name '{cell_line_key}' not found for PRISM data")
            return f"FAIL: Cell line name '{cell_line_key}' not found for PRISM data"

        depmap_id = self.cell_name_to_depmap[cell_line_key]

        if drug_name_lower not in self.ic50.columns:
            print(f"Drug name '{drug_name}' not found in IC50 matrix columns.")
            return f"FAIL: Drug name '{drug_name}' not found in IC50 matrix columns."

        try:
            ic50_val = self.ic50.loc[depmap_id, drug_name_lower]
            if pd.isna(ic50_val):
                print(f"FAIL: IC50 value is missing for '{drug_name}' in cell line '{cell_line_name}' (DepMap ID: {depmap_id}).")
                return f"FAIL: IC50 value is missing for '{drug_name}' in cell line '{cell_line_name}' (DepMap ID: {depmap_id})."

            return (
                f"The IC50 value of {ic50_val:.4f} corresponds to the log10-transformed micromolar concentration "
                f"at which {drug_name} inhibits 50% of viability in the {cell_line_name} cell line "
                f"(DepMap ID: {depmap_id}).\n\n"
                "This value comes from the PRISM Repurposing Secondary Screen, which exposes pooled barcoded cell lines "
                "to drug treatment for 5 days and infers viability from barcode abundance using sequencing.\n\n"
                "The secondary screen includes higher-confidence compound–cell line pairs with improved replicability "
                "compared to the primary screen.\n\n"
                "Lower IC50 values indicate greater sensitivity of the cell line to the drug."
            )
        except KeyError as e:
            print(f"Combination not found: {e}")
            return None


    def clean_cell_line_name(self, name):
        """
        Standardize cell line names for comparison by:
        1. Converting to string (handles any non-string values)
        2. Converting to uppercase
        3. Removing all non-alphanumeric characters
        
        Args:
            name: Cell line name (string or other type)
            
        Returns:
            Cleaned string with only uppercase letters and numbers
        """
        return re.sub(r"[^A-Z0-9]", "", str(name).upper())

    def get_lc50_nci60(self, drug_name: str, cell_line_name: str):
        cell_line_name = cell_line_name.upper()
        cell_line_key = self.clean_cell_line_name(cell_line_name)

        if cell_line_key not in self.cell_name_to_depmap_lc50:
            print(f"Cell line name '{cell_line_key}' not found for NCI60 data")
            return None
        depmap_id = self.cell_name_to_depmap_lc50[cell_line_key]
        print ("Depmap_id", depmap_id)

        # Find the drug in NCI60 dataset
        # Since drugs are in uppercase in the list, convert search term to uppercase
        drug_name_upper = drug_name.strip().upper()

        # Filter rows where the drug name is in the drug column
        # This assumes drugs in each row are comma-separated or in a format that can be searched
        matching_row = self.lc50[self.lc50['drug'].str.contains(drug_name_upper, na=False)]
        print ("Matching row", matching_row)
        if matching_row.empty:
            print(f"Drug name '{drug_name}' not found in NCI60 dataset.")
            return None

        if matching_row.empty:
            raise ValueError(f"Multiple matches found for drug '{drug_name}' in NCI60 dataset.")

        print ("Matching row", matching_row)
        # Get the LC50 value from the matching row
        lc50_val = matching_row.iloc[0]['NLOGLC50']
        lconc_val = matching_row.iloc[0]['LCONC']

        if pd.isna(lc50_val):
            return "LC50 value is missing for '{drug_name}' in cell line '{cell_line_name}' (depmap_id: {depmap_id})."
        
        lc50_output = \
        f"""
        The LC50 value of {lc50_val} represents -log10(LC50), the negative base-10 logarithm of the molar concentration that inhibits 50% of cell growth. 

        Higher LC50 values therefore indicate greater drug potency. 

        The LCONC value of {lconc_val} denotes the maximum log10 molar concentration tested in the dilution series—for example, LCONC = -4 corresponds to 10^-4 M. 

        Both metrics come from the NCI-60 drug screen, which applies a standardized 48-hour exposure assay across all compound–cell-line pairs."
        """
        
        return lc50_output
    
    def load_gene_sets_file(self, file_path):
        """
        Load gene sets from a tab-delimited file where the first column is the gene set name
        and the remaining columns are gene symbols.
        
        Parameters:
        -----------
        file_path : str
            Path to the gene sets file
            
        Returns:
        --------
        dict
            Dictionary mapping gene set names to lists of genes
        """
        gene_sets = {}
        with open(file_path, 'r') as file:
            for line in file:
                parts = line.strip().split('\t')
                if parts:
                    set_name = parts[0]
                    genes = [gene for gene in parts[1:] if gene]  # Filter out empty strings
                    gene_sets[set_name] = genes
        return gene_sets

    def get_genes_for_set(self, set_name):
        """
        Get the list of genes for a specific gene set.
        
        Parameters:
        -----------
        set_name : str
            Name of the gene set to query
            
        Returns:
        --------
        list
            List of genes in the gene set, or empty list if set not found
        """
        if not hasattr(self, 'gene_sets'):
            # Load the gene sets file if it hasn't been loaded yet
            self.gene_sets = self.load_gene_sets_file('/home/ubuntu/ishita/msigdb_all_sigs_human_symbols.txt')
        
        return self.gene_sets.get(set_name, [])
            
    def rank_vision_scores(self, drug_name: str, cell_line_name: str, k_value: int):
        self.tahoe_vision_scores.X = (self.tahoe_vision_scores.X - np.mean(self.tahoe_vision_scores.X, axis = 0)) / np.std(self.tahoe_vision_scores.X, axis = 0)

        # subset to the drug / cell line at the highest tested concentration
        filt = (
            (self.tahoe_vision_scores.obs["Cell_Name_Vevo"] == cell_line_name)
            & (self.tahoe_vision_scores.obs["drug"] == drug_name)
        )
        filtered_scores = self.tahoe_vision_scores[filt]
        if filtered_scores.n_obs == 0:
            return "VISION scores not found for this drug–cell-line combination."

        filtered_scores = filtered_scores[
            filtered_scores.obs["concentration"] == filtered_scores.obs["concentration"].max()
        ]

        # pick top-|score| gene sets
        top_idx = np.argsort(-np.abs(filtered_scores.X[0]))[:k_value]
        gene_sets = filtered_scores.var.index[top_idx].tolist()
        scores    = filtered_scores.X[0, top_idx].tolist()

        # build the narrative
        header = (
            "VISION scores are single-cell gene-set enrichment values computed by the "
            "VISION algorithm (DeTomaso & Yosef 2021). Positive scores indicate relative "
            "up-regulation of the gene set in the queried condition; negative scores indicate "
            "down-regulation.\n"
        )
        lines = []
        for gs, val in zip(gene_sets, scores):
            gs_name = gs.replace("gs_", "")
            genes = self.get_genes_for_set(gs_name)
            direction = "up-regulated" if val > 0 else "down-regulated" if val < 0 else "not changed"
            lines.append(f"{gs} has gene set {genes} : {direction} (VISION score = {val:.3f})")

        return header + "\n".join(lines)
    
    def obtain_moa(self, drug_name: str):
        row = self.tahoe_drug_meta[self.tahoe_drug_meta["drug"] == drug_name]

        if row.empty:
            return "MOA annotation not found for this drug."
        
        moa_broad = row["moa-broad"].values[0]
        moa_fine  = row["moa-fine"].values[0]

        return (
            f"Broad MOA: {moa_broad}; "
            f"Fine MOA: {moa_fine}. "
            "Fine-grained mechanism of action (MOA) annotation for the drug, "
            "specifying the biological process or molecular target affected. "
            "Derived from MedChemExpress and curated with GPT-based annotations."
        )

    def obtain_gene_targets(self, drug_name: str):
        row = self.tahoe_drug_meta[self.tahoe_drug_meta["drug"] == drug_name]
        if row.empty:
            return "Gene targets not found for this drug."
        
        targets = row["targets"].values[0]

        # Convert a stringified list/dict to a Python object, if necessary.
        if isinstance(targets, str):
            try:
                targets = eval(targets)
            except Exception:  # fall back to treating it as a single ID
                targets = [targets]

        return (
            f"Gene target token IDs: {targets}. "
            "Gene identifiers (integer token IDs) corresponding to each gene with non-zero expression in the cell."
        )

    def obtain_cell_line_data(self, cell_line_name: str):
        row = self.tahoe_cell_meta[self.tahoe_cell_meta["cell_name"] == cell_line_name]

        if row.empty:
            return "Cell-line metadata not found for this cell line."
        
        organ                 = row["Organ"].values[0]
        driver_gene_symbol    = row["Driver_Gene_Symbol"].values[0]
        driver_varzyg         = row["Driver_VarZyg"].values[0]
        driver_vartype        = row["Driver_VarType"].values[0]
        driver_proteffect     = row["Driver_ProtEffect_or_CdnaEffect"].values[0]
        driver_mech_inferdm   = row["Driver_Mech_InferDM"].values[0]
        driver_genetype_dm    = row["Driver_GeneType_DM"].values[0]

        return (
            f"Organ: {organ}; "
            f"Driver_Gene_Symbol: {driver_gene_symbol}; "
            f"Driver_VarZyg: {driver_varzyg}; "
            f"Driver_VarType: {driver_vartype}; "
            f"Driver_ProtEffect_or_CdnaEffect: {driver_proteffect}; "
            f"Driver_Mech_InferDM: {driver_mech_inferdm}; "
            f"Driver_GeneType_DM: {driver_genetype_dm}. "
            "Organ = tissue or organ of origin for the cell line (e.g., Lung), used to interpret lineage-specific responses. "
            "Driver_Gene_Symbol = HGNC-approved symbol of a driver gene with functional alterations in this cell line. "
            "Driver_VarZyg = zygosity of the driver variant (Hom = homozygous, Het = heterozygous). "
            "Driver_VarType = type of genetic alteration (e.g., Missense, Frameshift, Stopgain). "
            "Driver_ProtEffect_or_CdnaEffect = precise protein or cDNA-level annotation of the mutation (e.g., p.G12S). "
            "Driver_Mech_InferDM = inferred functional mechanism (LoF = loss-of-function, GoF = gain-of-function). "
            "Driver_GeneType_DM = classification of the driver gene as an Oncogene or Suppressor."
        )   

    def run_gradio_chat(self, message: str,
                    history: list,
                    temperature: float,
                    max_new_tokens: int,
                    max_token: int,
                    call_agent: bool,
                    conversation: gr.State,
                    max_round: int = 20,
                    seed: int = None,
                    call_agent_level: int = 0,
                    sub_agent_task: str = None):
    
        print("\033[1;32;40mstart\033[0m")
        print("len(message)", len(message))

        if len(message) <= 10:
            yield "Hi, I am Agent, an assistant for answering biomedical questions. Please provide a valid message with a string longer than 10 characters."
            return "Please provide a valid message."
        
        outputs = []
        outputs_str = ''
        last_outputs = []

        conversation = self.initialize_conversation(
            message,
            conversation=conversation,
            history=history)
        
        history = []

        next_round = True
        function_call_messages = []
        current_round = 0
        enable_summary = False
        last_status = {}  # for summary
        token_overflow = False
        # if self.enable_checker:
        #     checker = ReasoningTraceChecker(
        #         message, conversation, init_index=len(conversation))

        # try:
        self.conversation.append({"role": "user", "content": message})
        while next_round and current_round < max_round:
            current_round += 1

            response = self.llm_infer(self.conversation)
            self.conversation.append({"role": "system", "content": response})
            tool_called = False 
            print(response)
            # import pdb; pdb.set_trace()

            if 'Tool-call:' in response:
                match = re.search(r"Tool-call:\s*(.*)", response, re.DOTALL)
                response_text = match.group(1).strip()
                if "None" not in response_text and response_text.replace('-', '').rstrip().replace('FINISHED', '').rstrip():   
                    history.append(ChatMessage(
                        role="assistant", content=f"{response.replace('FINISHED', '').split('</think>')[1]}"))
                    yield history 
                    
                    tool_called = True
                    print(response_text)
                    if "FAIL" in response_text:
                        self.conversation.append({"role": "system", "content": tool_response})
                        history.append(
                            ChatMessage(role="assistant", content=f"Response from tool FAILED ")
                        )
                        next_round = False
                        yield history 
                    else:        
                        tool_call_text = response_text
                        if ';' in tool_call_text:
                            tool_calls = [i.replace('\n', '').rstrip('-').replace('FINISHED', '').replace('Response:', '') for i in tool_call_text.split(';') if i]
                        elif '\n' in tool_call_text:
                            tool_calls = [i.replace('\n', '').rstrip('-').replace('FINISHED', '').replace('Response:', '') for i in tool_call_text.split('\n') if i]
                        else:
                            tool_calls = [tool_call_text]
                    
                        tool_calls = [i.rstrip('-') for i in tool_calls if i]

                        for call in tool_calls:
                            print(f"\033[1;34;40mCalling this command now {call}\033[0m")
                            tool_response = str(eval(call))
                            self.conversation.append({"role": "system", "content": tool_response})
                            history.append(
                                ChatMessage(role="assistant", content=f"Response from tool: {tool_response}")
                            )
                            print(f"\033[1;34;40mGot this response {tool_response}\033[0m")
                            yield history
                else:
                    history.append(
                                ChatMessage(role="assistant", content=f"{response}")
                            )
                    yield history

            elif 'Response:' in response or tool_called is False:
                match = re.search(r"Response:\s*(.*)", response, re.DOTALL)
                response_text = match.group(1).strip().replace('Tool-call: None', '')
                print(f"\033[1;33;40mresponse text: {response_text}\033[0m")
                history.append(
                    ChatMessage(
                        role="assistant", content=f"{response_text.replace('FINISHED', '')}")
                )
                yield history
                
            if 'FINISHED' in response and tool_called is False:
                next_round = False





      
        #         if len(last_outputs) > 0:
        #             function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
        #                 last_outputs, return_message=True,
        #                 existing_tools_prompt=picked_tools_prompt,
        #                 message_for_call_agent=message,
        #                 call_agent=call_agent,
        #                 call_agent_level=call_agent_level,
        #                 temperature=temperature)
        #             history.extend(current_gradio_history)
        #             if special_tool_call == 'Finish':
        #                 yield history
        #                 next_round = False
        #                 conversation.extend(function_call_messages)
        #                 return function_call_messages[0]['content']
        #             elif special_tool_call == 'RequireClarification' or special_tool_call == 'DirectResponse':
        #                 history.append(
        #                     ChatMessage(role="assistant", content=history[-1].content))
        #                 yield history
        #                 next_round = False
        #                 return history[-1].content
        #             if (self.enable_summary or token_overflow) and not call_agent:
        #                 if token_overflow:
        #                     print("token_overflow, using summary")
        #                 enable_summary = True
        #             last_status = self.function_result_summary(
        #                 conversation, status=last_status,
        #                 enable_summary=enable_summary)
        #             if function_call_messages is not None:
        #                 conversation.extend(function_call_messages)
        #                 formated_md_function_call_messages = tool_result_format(
        #                     function_call_messages)
        #                 yield history
        #             else:
        #                 next_round = False
        #                 conversation.extend(
        #                     [{"role": "assistant", "content": ''.join(last_outputs)}])
        #                 return ''.join(last_outputs).replace("</s>", "")
        #         # if self.enable_checker:
        #         #     good_status, wrong_info = checker.check_conversation()
        #         #     if not good_status:
        #         #         next_round = False
        #         #         print("Internal error in reasoning: " + wrong_info)
        #         #         break
        #         last_outputs = []
        #         last_outputs_str, token_overflow = self.llm_infer(
        #             messages=conversation,
        #             temperature=temperature,
        #             tools=picked_tools_prompt,
        #             skip_special_tokens=False,
        #             max_new_tokens=max_new_tokens,
        #             max_token=max_token,
        #             seed=seed,
        #             check_token_status=True)
        #         last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
        #         for each in history:
        #             if each.metadata is not None:
        #                 each.metadata['status'] = 'done'
        #         if '[FinalAnswer]' in last_thought:
        #             final_thought, final_answer = last_thought.split(
        #                 '[FinalAnswer]')
        #             history.append(
        #                 ChatMessage(role="assistant",
        #                             content=final_thought.strip())
        #             )
        #             yield history
        #             history.append(
        #                 ChatMessage(
        #                     role="assistant", content="**Answer**:\n"+final_answer.strip())
        #             )
        #             yield history
        #         else:
        #             history.append(ChatMessage(
        #                 role="assistant", content=last_thought))
        #             yield history

        #         last_outputs.append(last_outputs_str)

        #     if self.force_finish:
        #         last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
        #             conversation, temperature, max_new_tokens, max_token, return_full_thought=True)
        #         for each in history:
        #             if each.metadata is not None:
        #                 each.metadata['status'] = 'done'

        #         final_thought, final_answer = last_outputs_str.split('[FinalAnswer]')
        #         history.append(
        #             ChatMessage(role="assistant",
        #                         content=final_thought.strip())
        #         )
        #         yield history
        #         history.append(
        #             ChatMessage(
        #                 role="assistant", content="**Answer**:\n"+final_answer.strip())
        #         )
        #         yield history
        #     else:
        #         yield "The number of rounds exceeds the maximum limit!"

        # except Exception as e:
        #     print(f"Error: {e}")
        #     if self.force_finish:
        #         last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
        #             conversation,
        #             temperature,
        #             max_new_tokens,
        #             max_token,
        #             return_full_thought=True)
        #         for each in history:
        #             if each.metadata is not None:
        #                 each.metadata['status'] = 'done'

        #         final_thought, final_answer = last_outputs_str.split(
        #             '[FinalAnswer]')
        #         history.append(
        #             ChatMessage(role="assistant",
        #                         content=final_thought.strip())
        #         )
        #         yield history
        #         history.append(
        #             ChatMessage(
        #                 role="assistant", content="**Answer**:\n"+final_answer.strip())
        #         )
        #         yield history
        #     else:
        #         return None