File size: 2,109 Bytes
7556ac8 29bd56f 7556ac8 29bd56f 7556ac8 29bd56f 7556ac8 29bd56f 7556ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- ndcg
- trl
- generated_from_trainer
- trl
- ndcg
- generated_from_trainer
datasets:
- yangzhao02/ListUltraFeedback
model-index:
- name: mistral-7b-base-dpo-best_with_worst-listsize_8-beta_0.01-batchsize_128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhaoyang1/huggingface/runs/qs6wlcwl)
# mistral-7b-base-dpo-best_with_worst-listsize_8-beta_0.01-batchsize_128
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the yangzhao02/ListUltraFeedback dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6612
- Logps: -355.0632
- Logits: -2.6346
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Logps | Logits |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.6722 | 0.5343 | 250 | 0.6677 | -337.5862 | -2.6895 |
### Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|