File size: 2,174 Bytes
0451aeb
 
 
 
f5c789c
 
 
 
0451aeb
 
 
f5c789c
 
0451aeb
 
 
 
 
 
 
 
 
 
 
f5c789c
0451aeb
f5c789c
 
 
0451aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- ndcg
- trl
- generated_from_trainer
- trl
- ndcg
- generated_from_trainer
datasets:
- yangzhao02/ListUltraFeedback
model-index:
- name: mistral-7b-base-approx_ndcg_1-listsize_8-alpha_25.0-batchsize_128
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhaoyang1/huggingface/runs/13nrxem0)
# mistral-7b-base-approx_ndcg_1-listsize_8-alpha_25.0-batchsize_128

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the yangzhao02/ListUltraFeedback dataset.
It achieves the following results on the evaluation set:
- Loss: -0.9811
- Logps: -290.9563
- Logits: -2.9474

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Logps     | Logits  |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| -0.9788       | 0.4275 | 200  | -0.9776         | -289.3082 | -3.0493 |
| -0.9812       | 0.8549 | 400  | -0.9810         | -291.1517 | -2.9495 |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1