File size: 23,475 Bytes
ca3e491 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import math
import torch
import torch.nn as nn
class Deltas(torch.nn.Module):
"""Computes delta coefficients (time derivatives).
Arguments
---------
win_length : int
Length of the window used to compute the time derivatives.
Example
-------
>>> inputs = torch.randn([10, 101, 20])
>>> compute_deltas = Deltas(input_size=inputs.size(-1))
>>> features = compute_deltas(inputs)
>>> features.shape
torch.Size([10, 101, 20])
"""
def __init__(
self, input_size, window_length=5,
):
super().__init__()
self.n = (window_length - 1) // 2
self.denom = self.n * (self.n + 1) * (2 * self.n + 1) / 3
self.register_buffer(
"kernel",
torch.arange(-self.n, self.n + 1, dtype=torch.float32,).repeat(
input_size, 1, 1
),
)
def forward(self, x):
"""Returns the delta coefficients.
Arguments
---------
x : tensor
A batch of tensors.
"""
# Managing multi-channel deltas reshape tensor (batch*channel,time)
x = x.transpose(1, 2).transpose(2, -1)
or_shape = x.shape
if len(or_shape) == 4:
x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])
# Padding for time borders
x = torch.nn.functional.pad(x, (self.n, self.n), mode="replicate")
# Derivative estimation (with a fixed convolutional kernel)
delta_coeff = (
torch.nn.functional.conv1d(
x, self.kernel.to(x.device), groups=x.shape[1]
)
/ self.denom
)
# Retrieving the original dimensionality (for multi-channel case)
if len(or_shape) == 4:
delta_coeff = delta_coeff.reshape(
or_shape[0], or_shape[1], or_shape[2], or_shape[3],
)
delta_coeff = delta_coeff.transpose(1, -1).transpose(2, -1)
return delta_coeff
class Filterbank(torch.nn.Module):
"""computes filter bank (FBANK) features given spectral magnitudes.
Arguments
---------
n_mels : float
Number of Mel filters used to average the spectrogram.
log_mel : bool
If True, it computes the log of the FBANKs.
filter_shape : str
Shape of the filters ('triangular', 'rectangular', 'gaussian').
f_min : int
Lowest frequency for the Mel filters.
f_max : int
Highest frequency for the Mel filters.
n_fft : int
Number of fft points of the STFT. It defines the frequency resolution
(n_fft should be<= than win_len).
sample_rate : int
Sample rate of the input audio signal (e.g, 16000)
power_spectrogram : float
Exponent used for spectrogram computation.
amin : float
Minimum amplitude (used for numerical stability).
ref_value : float
Reference value used for the dB scale.
top_db : float
Minimum negative cut-off in decibels.
freeze : bool
If False, it the central frequency and the band of each filter are
added into nn.parameters. If True, the standard frozen features
are computed.
param_change_factor: bool
If freeze=False, this parameter affects the speed at which the filter
parameters (i.e., central_freqs and bands) can be changed. When high
(e.g., param_change_factor=1) the filters change a lot during training.
When low (e.g. param_change_factor=0.1) the filter parameters are more
stable during training
param_rand_factor: float
This parameter can be used to randomly change the filter parameters
(i.e, central frequencies and bands) during training. It is thus a
sort of regularization. param_rand_factor=0 does not affect, while
param_rand_factor=0.15 allows random variations within +-15% of the
standard values of the filter parameters (e.g., if the central freq
is 100 Hz, we can randomly change it from 85 Hz to 115 Hz).
Example
-------
>>> import torch
>>> compute_fbanks = Filterbank()
>>> inputs = torch.randn([10, 101, 201])
>>> features = compute_fbanks(inputs)
>>> features.shape
torch.Size([10, 101, 40])
"""
def __init__(
self,
n_mels=40,
log_mel=True,
filter_shape="triangular",
f_min=0,
f_max=8000,
n_fft=400,
sample_rate=16000,
power_spectrogram=2,
amin=1e-10,
ref_value=1.0,
top_db=80.0,
param_change_factor=1.0,
param_rand_factor=0.0,
freeze=True,
):
super().__init__()
self.n_mels = n_mels
self.log_mel = log_mel
self.filter_shape = filter_shape
self.f_min = f_min
self.f_max = f_max
self.n_fft = n_fft
self.sample_rate = sample_rate
self.power_spectrogram = power_spectrogram
self.amin = amin
self.ref_value = ref_value
self.top_db = top_db
self.freeze = freeze
self.n_stft = self.n_fft // 2 + 1
self.db_multiplier = math.log10(max(self.amin, self.ref_value))
self.device_inp = torch.device("cpu")
self.param_change_factor = param_change_factor
self.param_rand_factor = param_rand_factor
if self.power_spectrogram == 2:
self.multiplier = 10
else:
self.multiplier = 20
# Make sure f_min < f_max
if self.f_min >= self.f_max:
err_msg = "Require f_min: %f < f_max: %f" % (
self.f_min,
self.f_max,
)
print(err_msg)
# Filter definition
mel = torch.linspace(
self._to_mel(self.f_min), self._to_mel(self.f_max), self.n_mels + 2
)
hz = self._to_hz(mel)
# Computation of the filter bands
band = hz[1:] - hz[:-1]
self.band = band[:-1]
self.f_central = hz[1:-1]
# Adding the central frequency and the band to the list of nn param
if not self.freeze:
self.f_central = torch.nn.Parameter(
self.f_central / (self.sample_rate * self.param_change_factor)
)
self.band = torch.nn.Parameter(
self.band / (self.sample_rate * self.param_change_factor)
)
# Frequency axis
all_freqs = torch.linspace(0, self.sample_rate // 2, self.n_stft)
# Replicating for all the filters
self.all_freqs_mat = all_freqs.repeat(self.f_central.shape[0], 1)
def forward(self, spectrogram):
"""Returns the FBANks.
Arguments
---------
x : tensor
A batch of spectrogram tensors.
"""
# Computing central frequency and bandwidth of each filter
f_central_mat = self.f_central.repeat(
self.all_freqs_mat.shape[1], 1
).transpose(0, 1)
band_mat = self.band.repeat(self.all_freqs_mat.shape[1], 1).transpose(
0, 1
)
# Uncomment to print filter parameters
# print(self.f_central*self.sample_rate * self.param_change_factor)
# print(self.band*self.sample_rate* self.param_change_factor)
# Creation of the multiplication matrix. It is used to create
# the filters that average the computed spectrogram.
if not self.freeze:
f_central_mat = f_central_mat * (
self.sample_rate
* self.param_change_factor
* self.param_change_factor
)
band_mat = band_mat * (
self.sample_rate
* self.param_change_factor
* self.param_change_factor
)
# Regularization with random changes of filter central frequency and band
elif self.param_rand_factor != 0 and self.training:
rand_change = (
1.0
+ torch.rand(2) * 2 * self.param_rand_factor
- self.param_rand_factor
)
f_central_mat = f_central_mat * rand_change[0]
band_mat = band_mat * rand_change[1]
fbank_matrix = self._create_fbank_matrix(f_central_mat, band_mat).to(
spectrogram.device
)
sp_shape = spectrogram.shape
# Managing multi-channels case (batch, time, channels)
if len(sp_shape) == 4:
spectrogram = spectrogram.permute(0, 3, 1, 2)
spectrogram = spectrogram.reshape(
sp_shape[0] * sp_shape[3], sp_shape[1], sp_shape[2]
)
# FBANK computation
fbanks = torch.matmul(spectrogram, fbank_matrix)
if self.log_mel:
fbanks = self._amplitude_to_DB(fbanks)
# Reshaping in the case of multi-channel inputs
if len(sp_shape) == 4:
fb_shape = fbanks.shape
fbanks = fbanks.reshape(
sp_shape[0], sp_shape[3], fb_shape[1], fb_shape[2]
)
fbanks = fbanks.permute(0, 2, 3, 1)
return fbanks
@staticmethod
def _to_mel(hz):
"""Returns mel-frequency value corresponding to the input
frequency value in Hz.
Arguments
---------
x : float
The frequency point in Hz.
"""
return 2595 * math.log10(1 + hz / 700)
@staticmethod
def _to_hz(mel):
"""Returns hz-frequency value corresponding to the input
mel-frequency value.
Arguments
---------
x : float
The frequency point in the mel-scale.
"""
return 700 * (10 ** (mel / 2595) - 1)
def _triangular_filters(self, all_freqs, f_central, band):
"""Returns fbank matrix using triangular filters.
Arguments
---------
all_freqs : Tensor
Tensor gathering all the frequency points.
f_central : Tensor
Tensor gathering central frequencies of each filter.
band : Tensor
Tensor gathering the bands of each filter.
"""
# Computing the slops of the filters
slope = (all_freqs - f_central) / band
left_side = slope + 1.0
right_side = -slope + 1.0
# Adding zeros for negative values
zero = torch.zeros(1, device=self.device_inp)
fbank_matrix = torch.max(
zero, torch.min(left_side, right_side)
).transpose(0, 1)
return fbank_matrix
def _rectangular_filters(self, all_freqs, f_central, band):
"""Returns fbank matrix using rectangular filters.
Arguments
---------
all_freqs : Tensor
Tensor gathering all the frequency points.
f_central : Tensor
Tensor gathering central frequencies of each filter.
band : Tensor
Tensor gathering the bands of each filter.
"""
# cut-off frequencies of the filters
low_hz = f_central - band
high_hz = f_central + band
# Left/right parts of the filter
left_side = right_size = all_freqs.ge(low_hz)
right_size = all_freqs.le(high_hz)
fbank_matrix = (left_side * right_size).float().transpose(0, 1)
return fbank_matrix
def _gaussian_filters(
self, all_freqs, f_central, band, smooth_factor=torch.tensor(2)
):
"""Returns fbank matrix using gaussian filters.
Arguments
---------
all_freqs : Tensor
Tensor gathering all the frequency points.
f_central : Tensor
Tensor gathering central frequencies of each filter.
band : Tensor
Tensor gathering the bands of each filter.
smooth_factor: Tensor
Smoothing factor of the gaussian filter. It can be used to employ
sharper or flatter filters.
"""
fbank_matrix = torch.exp(
-0.5 * ((all_freqs - f_central) / (band / smooth_factor)) ** 2
).transpose(0, 1)
return fbank_matrix
def _create_fbank_matrix(self, f_central_mat, band_mat):
"""Returns fbank matrix to use for averaging the spectrum with
the set of filter-banks.
Arguments
---------
f_central : Tensor
Tensor gathering central frequencies of each filter.
band : Tensor
Tensor gathering the bands of each filter.
smooth_factor: Tensor
Smoothing factor of the gaussian filter. It can be used to employ
sharper or flatter filters.
"""
if self.filter_shape == "triangular":
fbank_matrix = self._triangular_filters(
self.all_freqs_mat, f_central_mat, band_mat
)
elif self.filter_shape == "rectangular":
fbank_matrix = self._rectangular_filters(
self.all_freqs_mat, f_central_mat, band_mat
)
else:
fbank_matrix = self._gaussian_filters(
self.all_freqs_mat, f_central_mat, band_mat
)
return fbank_matrix
def _amplitude_to_DB(self, x):
"""Converts linear-FBANKs to log-FBANKs.
Arguments
---------
x : Tensor
A batch of linear FBANK tensors.
"""
x_db = self.multiplier * torch.log10(torch.clamp(x, min=self.amin))
x_db -= self.multiplier * self.db_multiplier
# Setting up dB max. It is the max over time and frequency,
# Hence, of a whole sequence (sequence-dependent)
new_x_db_max = x_db.amax(dim=(-2, -1)) - self.top_db
# Clipping to dB max. The view is necessary as only a scalar is obtained
# per sequence.
x_db = torch.max(x_db, new_x_db_max.view(x_db.shape[0], 1, 1))
return x_db
class STFT(torch.nn.Module):
"""computes the Short-Term Fourier Transform (STFT).
This class computes the Short-Term Fourier Transform of an audio signal.
It supports multi-channel audio inputs (batch, time, channels).
Arguments
---------
sample_rate : int
Sample rate of the input audio signal (e.g 16000).
win_length : float
Length (in ms) of the sliding window used to compute the STFT.
hop_length : float
Length (in ms) of the hope of the sliding window used to compute
the STFT.
n_fft : int
Number of fft point of the STFT. It defines the frequency resolution
(n_fft should be <= than win_len).
window_fn : function
A function that takes an integer (number of samples) and outputs a
tensor to be multiplied with each window before fft.
normalized_stft : bool
If True, the function returns the normalized STFT results,
i.e., multiplied by win_length^-0.5 (default is False).
center : bool
If True (default), the input will be padded on both sides so that the
t-th frame is centered at time t×hop_length. Otherwise, the t-th frame
begins at time t×hop_length.
pad_mode : str
It can be 'constant','reflect','replicate', 'circular', 'reflect'
(default). 'constant' pads the input tensor boundaries with a
constant value. 'reflect' pads the input tensor using the reflection
of the input boundary. 'replicate' pads the input tensor using
replication of the input boundary. 'circular' pads using circular
replication.
onesided : True
If True (default) only returns nfft/2 values. Note that the other
samples are redundant due to the Fourier transform conjugate symmetry.
Example
-------
>>> import torch
>>> compute_STFT = STFT(
... sample_rate=16000, win_length=25, hop_length=10, n_fft=400
... )
>>> inputs = torch.randn([10, 16000])
>>> features = compute_STFT(inputs)
>>> features.shape
torch.Size([10, 101, 201, 2])
"""
def __init__(
self,
sample_rate,
win_length=25,
hop_length=10,
n_fft=400,
window_fn=torch.hamming_window,
normalized_stft=False,
center=True,
pad_mode="constant",
onesided=True,
):
super().__init__()
self.sample_rate = sample_rate
self.win_length = win_length
self.hop_length = hop_length
self.n_fft = n_fft
self.normalized_stft = normalized_stft
self.center = center
self.pad_mode = pad_mode
self.onesided = onesided
# Convert win_length and hop_length from ms to samples
self.win_length = int(
round((self.sample_rate / 1000.0) * self.win_length)
)
self.hop_length = int(
round((self.sample_rate / 1000.0) * self.hop_length)
)
self.window = window_fn(self.win_length)
def forward(self, x):
"""Returns the STFT generated from the input waveforms.
Arguments
---------
x : tensor
A batch of audio signals to transform.
"""
# Managing multi-channel stft
or_shape = x.shape
if len(or_shape) == 3:
x = x.transpose(1, 2)
x = x.reshape(or_shape[0] * or_shape[2], or_shape[1])
stft = torch.stft(
x,
self.n_fft,
self.hop_length,
self.win_length,
self.window.to(x.device),
self.center,
self.pad_mode,
self.normalized_stft,
self.onesided,
return_complex=True,
)
stft = torch.view_as_real(stft)
# Retrieving the original dimensionality (batch,time, channels)
if len(or_shape) == 3:
stft = stft.reshape(
or_shape[0],
or_shape[2],
stft.shape[1],
stft.shape[2],
stft.shape[3],
)
stft = stft.permute(0, 3, 2, 4, 1)
else:
# (batch, time, channels)
stft = stft.transpose(2, 1)
return stft
def spectral_magnitude(
stft, power: int = 1, log: bool = False, eps: float = 1e-14
):
"""Returns the magnitude of a complex spectrogram.
Arguments
---------
stft : torch.Tensor
A tensor, output from the stft function.
power : int
What power to use in computing the magnitude.
Use power=1 for the power spectrogram.
Use power=0.5 for the magnitude spectrogram.
log : bool
Whether to apply log to the spectral features.
Example
-------
>>> a = torch.Tensor([[3, 4]])
>>> spectral_magnitude(a, power=0.5)
tensor([5.])
"""
spectr = stft.pow(2).sum(-1)
# Add eps avoids NaN when spectr is zero
if power < 1:
spectr = spectr + eps
spectr = spectr.pow(power)
if log:
return torch.log(spectr + eps)
return spectr
class ContextWindow(torch.nn.Module):
"""Computes the context window.
This class applies a context window by gathering multiple time steps
in a single feature vector. The operation is performed with a
convolutional layer based on a fixed kernel designed for that.
Arguments
---------
left_frames : int
Number of left frames (i.e, past frames) to collect.
right_frames : int
Number of right frames (i.e, future frames) to collect.
Example
-------
>>> import torch
>>> compute_cw = ContextWindow(left_frames=5, right_frames=5)
>>> inputs = torch.randn([10, 101, 20])
>>> features = compute_cw(inputs)
>>> features.shape
torch.Size([10, 101, 220])
"""
def __init__(
self, left_frames=0, right_frames=0,
):
super().__init__()
self.left_frames = left_frames
self.right_frames = right_frames
self.context_len = self.left_frames + self.right_frames + 1
self.kernel_len = 2 * max(self.left_frames, self.right_frames) + 1
# Kernel definition
self.kernel = torch.eye(self.context_len, self.kernel_len)
if self.right_frames > self.left_frames:
lag = self.right_frames - self.left_frames
self.kernel = torch.roll(self.kernel, lag, 1)
self.first_call = True
def forward(self, x):
"""Returns the tensor with the surrounding context.
Arguments
---------
x : tensor
A batch of tensors.
"""
x = x.transpose(1, 2)
if self.first_call is True:
self.first_call = False
self.kernel = (
self.kernel.repeat(x.shape[1], 1, 1)
.view(x.shape[1] * self.context_len, self.kernel_len,)
.unsqueeze(1)
)
# Managing multi-channel case
or_shape = x.shape
if len(or_shape) == 4:
x = x.reshape(or_shape[0] * or_shape[2], or_shape[1], or_shape[3])
# Compute context (using the estimated convolutional kernel)
cw_x = torch.nn.functional.conv1d(
x,
self.kernel.to(x.device),
groups=x.shape[1],
padding=max(self.left_frames, self.right_frames),
)
# Retrieving the original dimensionality (for multi-channel case)
if len(or_shape) == 4:
cw_x = cw_x.reshape(
or_shape[0], cw_x.shape[1], or_shape[2], cw_x.shape[-1]
)
cw_x = cw_x.transpose(1, 2)
return cw_x
class Fbank(torch.nn.Module):
def __init__(
self,
deltas=False,
context=False,
requires_grad=False,
sample_rate=16000,
f_min=0,
f_max=None,
n_fft=400,
n_mels=40,
filter_shape="triangular",
param_change_factor=1.0,
param_rand_factor=0.0,
left_frames=5,
right_frames=5,
win_length=25,
hop_length=10,
):
super().__init__()
self.deltas = deltas
self.context = context
self.requires_grad = requires_grad
if f_max is None:
f_max = sample_rate / 2
self.compute_STFT = STFT(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)
self.compute_fbanks = Filterbank(
sample_rate=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
f_min=f_min,
f_max=f_max,
freeze=not requires_grad,
filter_shape=filter_shape,
param_change_factor=param_change_factor,
param_rand_factor=param_rand_factor,
)
self.compute_deltas = Deltas(input_size=n_mels)
self.context_window = ContextWindow(
left_frames=left_frames, right_frames=right_frames,
)
def forward(self, wav):
"""Returns a set of features generated from the input waveforms.
Arguments
---------
wav : tensor
A batch of audio signals to transform to features.
"""
STFT = self.compute_STFT(wav)
mag = spectral_magnitude(STFT)
fbanks = self.compute_fbanks(mag)
if self.deltas:
delta1 = self.compute_deltas(fbanks)
delta2 = self.compute_deltas(delta1)
fbanks = torch.cat([fbanks, delta1, delta2], dim=2)
if self.context:
fbanks = self.context_window(fbanks)
return fbanks |