File size: 1,129 Bytes
d4917a2 d2f16db d4917a2 d2f16db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
license: mit
language: en
tags:
- table-to-text
- summarization
- long-form-question-answering
datasets:
- yale-nlp/QTSumm
---
# QTSumm Dataset
QTSumm is a query-focused table summarization dataset proposed in EMNLP 2023 paper [QTSUMM: Query-Focused Summarization over Tabular Data](https://arxiv.org/pdf/2305.14303.pdf). The original Github repository is [https://github.com/yale-nlp/QTSumm](https://github.com/yale-nlp/QTSumm).
## Model Description
`yale-nlp/reastap-large-finetuned-qtsumm` (based on BART architecture) is initialized with `Yale-LILY/reastap-large` and finetuned on the QTSumm dataset.
## Usage
Check the github repository: [https://github.com/yale-nlp/QTSumm](https://github.com/yale-nlp/QTSumm)
## Reference
```bibtex
@misc{zhao2023qtsumm,
title={QTSUMM: Query-Focused Summarization over Tabular Data},
author={Yilun Zhao and Zhenting Qi and Linyong Nan and Boyu Mi and Yixin Liu and Weijin Zou and Simeng Han and Xiangru Tang and Yumo Xu and Arman Cohan and Dragomir Radev},
year={2023},
eprint={2305.14303},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |