File size: 1,126 Bytes
31c1152 70f7170 31c1152 70f7170 945d8ca 70f7170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
license: mit
language: en
tags:
- table-to-text
- summarization
- long-form-question-answering
datasets:
- yale-nlp/QTSumm
---
# QTSumm Dataset
QTSumm is a query-focused table summarization dataset proposed in EMNLP 2023 paper [QTSUMM: Query-Focused Summarization over Tabular Data](https://arxiv.org/pdf/2305.14303.pdf). The original Github repository is [https://github.com/yale-nlp/QTSumm](https://github.com/yale-nlp/QTSumm).
## Model Description
`yale-nlp/omnitab-large-finetuned-qtsumm` (based on BART architecture) is initialized with `neulab/omnitab-large` and finetuned on the QTSumm dataset.
## Usage
Check the github repository: [https://github.com/yale-nlp/QTSumm](https://github.com/yale-nlp/QTSumm)
## Reference
```bibtex
@misc{zhao2023qtsumm,
title={QTSUMM: Query-Focused Summarization over Tabular Data},
author={Yilun Zhao and Zhenting Qi and Linyong Nan and Boyu Mi and Yixin Liu and Weijin Zou and Simeng Han and Xiangru Tang and Yumo Xu and Arman Cohan and Dragomir Radev},
year={2023},
eprint={2305.14303},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |