File size: 1,126 Bytes
31c1152
 
70f7170
 
 
 
 
 
 
31c1152
70f7170
 
 
 
 
 
 
945d8ca
70f7170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
license: mit
language: en
tags:
- table-to-text
- summarization
- long-form-question-answering
datasets:
- yale-nlp/QTSumm
---

# QTSumm Dataset

QTSumm is a query-focused table summarization dataset proposed in EMNLP 2023 paper [QTSUMM: Query-Focused Summarization over Tabular Data](https://arxiv.org/pdf/2305.14303.pdf). The original Github repository is [https://github.com/yale-nlp/QTSumm](https://github.com/yale-nlp/QTSumm).

## Model Description

`yale-nlp/omnitab-large-finetuned-qtsumm` (based on BART architecture) is initialized with `neulab/omnitab-large` and finetuned on the QTSumm dataset.

## Usage

Check the github repository: [https://github.com/yale-nlp/QTSumm](https://github.com/yale-nlp/QTSumm)

## Reference

```bibtex
@misc{zhao2023qtsumm,
      title={QTSUMM: Query-Focused Summarization over Tabular Data}, 
      author={Yilun Zhao and Zhenting Qi and Linyong Nan and Boyu Mi and Yixin Liu and Weijin Zou and Simeng Han and Xiangru Tang and Yumo Xu and Arman Cohan and Dragomir Radev},
      year={2023},
      eprint={2305.14303},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```