yakazimir's picture
End of training
5d4cb16 verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_qfUNL_entropy_0_01
    results: []

qwen_qfUNL_entropy_0_01

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6685
  • Sft Loss: 1.5897
  • Rewards/chosen: -1.6017
  • Rewards/rejected: -2.2330
  • Rewards/accuracies: 0.6506
  • Rewards/margins: 0.6314
  • Logps/rejected: -2.2330
  • Logps/chosen: -1.6017
  • Logits/rejected: 0.2142
  • Logits/chosen: 0.1178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Sft Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6889 0.2141 400 0.7003 1.4382 -1.5229 -1.6955 0.5579 0.1726 -1.6955 -1.5229 0.2817 0.1945
0.6916 0.4282 800 0.6822 1.5282 -1.5414 -1.8469 0.6076 0.3055 -1.8469 -1.5414 0.2875 0.2001
0.6757 0.6422 1200 0.6771 1.5574 -1.5600 -1.9539 0.6217 0.3939 -1.9539 -1.5600 0.2922 0.2043
0.6744 0.8563 1600 0.6739 1.5959 -1.6093 -2.0408 0.6335 0.4315 -2.0408 -1.6093 0.2827 0.1913
0.714 1.0704 2000 0.6719 1.5564 -1.5625 -2.0466 0.6269 0.4841 -2.0466 -1.5625 0.1990 0.1104
0.6715 1.2845 2400 0.6719 1.5799 -1.5845 -2.1083 0.6380 0.5238 -2.1083 -1.5845 0.2487 0.1536
0.6658 1.4986 2800 0.6707 1.6055 -1.6197 -2.1818 0.6454 0.5621 -2.1818 -1.6197 0.1108 0.0257
0.6709 1.7127 3200 0.6701 1.5845 -1.5941 -2.1721 0.6476 0.5780 -2.1721 -1.5941 0.1373 0.0502
0.659 1.9267 3600 0.6686 1.5568 -1.5549 -2.1383 0.6454 0.5835 -2.1383 -1.5549 0.1189 0.0332
0.6241 2.1408 4000 0.6689 1.5859 -1.5837 -2.1770 0.6454 0.5933 -2.1770 -1.5837 0.1840 0.0917
0.6443 2.3549 4400 0.6692 1.5919 -1.6001 -2.2168 0.6461 0.6166 -2.2168 -1.6001 0.0426 -0.0398
0.6356 2.5690 4800 0.6686 1.5864 -1.5964 -2.2216 0.6484 0.6252 -2.2216 -1.5964 0.1106 0.0226
0.6448 2.7831 5200 0.6683 1.5882 -1.5994 -2.2308 0.6506 0.6314 -2.2308 -1.5994 0.0974 0.0105
0.6368 2.9972 5600 0.6685 1.5897 -1.6017 -2.2330 0.6506 0.6314 -2.2330 -1.6017 0.2142 0.1178

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1