File size: 9,981 Bytes
5ddd9c9
 
 
 
 
 
 
 
 
 
 
 
e19d855
5ddd9c9
e19d855
 
 
 
5ddd9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d97a93
5ddd9c9
 
 
 
5f7b219
5ddd9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f7b219
5ddd9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a951351
5ddd9c9
 
97808c5
 
 
 
 
5ddd9c9
 
 
 
 
 
 
 
 
 
 
 
5f7b219
5ddd9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Reverse-complement equivariant modules.

"""
from collections import OrderedDict
from typing import Optional

import torch
from torch import Tensor
from torch import nn
from torch.nn import functional as F

try:
    from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn  # Legacy mambav1 file structure
except ImportError:
    try:
        from mamba_ssm.ops.triton.layer_norm import RMSNorm, layer_norm_fn, rms_norm_fn  # mambav2 file structure
    except ImportError:
        RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None


class RCPSEmbedding(nn.Module):
    """Embedding layer that supports reverse-complement equivariance."""
    def __init__(self, vocab_size: int, d_model: int, complement_map: dict, **factory_kwargs):
        """
        Args:
            vocab_size: Size of vocabulary.
            d_model: Dimensionality of embedding (actual embedding matrix will have 1/2 the output dim).
            complement_map: Dictionary mapping each token id to its complement.
        """
        super().__init__()
        self.register_buffer(
            "complement_map",
            torch.tensor(list(OrderedDict(complement_map).values()), dtype=torch.long)
        )
        self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)

    @property
    def weight(self):
        """Embedding weights."""
        return self.embedding.weight

    def set_weight(self, value):
        """Set embedding weights."""
        self.embedding.weight = value

    def rc(self, x):
        """Reverse-complement a tensor of input_ids by flipping along length dimension and complementing the ids."""
        return torch.gather(
            self.complement_map.unsqueeze(0).expand(x.shape[0], -1),
            dim=1,
            index=torch.flip(x, dims=[-1])
        )

    def forward(self, input_ids):
        """Reverse-complement equivariant forward pass.

        This embedding module doubles the output dimensionality to support reverse-complement equivariance.

        Args:
            input_ids: Input tensor of shape (batch_size, seq_len)
        Returns:
            Embedding tensor of shape (batch_size, seq_len, d_model * 2)
        """
        fwd_out = self.embedding(input_ids)
        rc_out = torch.flip(self.embedding(self.rc(input_ids)), dims=[-2, -1])

        return torch.cat([fwd_out, rc_out], dim=-1)


class RCPSWrapper(nn.Module):
    """Wrapper to convert arbitrary nn.Module into a reverse-complement equivariant module.

    See ref. "Towards a Better Understanding of Reverse-Complement Equivariance for Deep Learning Models in Regulatory
    Genomics", Zhou et al. (2022), https://proceedings.mlr.press/v165/zhou22a.html for more details.
    """
    def __init__(self, submodule: nn.Module):
        super().__init__()
        self.submodule = submodule

    @staticmethod
    def rc(x):
        """Reverse-complement a tensor by flipping the length (dim=-2) and channel (dim=-1) dimensions."""
        return torch.flip(x, dims=[-2, -1])

    def forward(self, x, **kwargs):
        """Reverse-complement equivariant forward pass.

        Args:
            x: Input tensor of shape (batch_size, seq_len, channels)
        Returns:
            Output tensor of shape (batch_size, seq_len, channels * 2)
        """
        n_channels = x.shape[-1]
        # Run submodule along sequence
        fwd_out = self.submodule(x[..., :n_channels // 2], **kwargs)
        # Run submodule along rc-sequence
        rc_out = self.submodule(self.rc(x[..., n_channels // 2:]), **kwargs)
        # Concatenate along channel dimension (dim=-1)
        return torch.cat([fwd_out, self.rc(rc_out)], dim=-1)


class RCPSAddNormWrapper(RCPSWrapper):
    """RC equivariant AddNorm layer."""
    def __init__(self, submodule: nn.Module):
        super().__init__(submodule)

    def forward(self, x, residual=None, prenorm=False):
        """
        Args:
            x: Input tensor of shape (batch_size, seq_len, channels)
            residual: Residual tensor of shape (batch_size, seq_len, channels) or None.
            prenorm: Whether to return residual.
        """
        n_channels = x.shape[-1]
        if residual is None:
            residual = x
            x_fwd = self.submodule(x[..., :n_channels // 2].to(dtype=self.submodule.weight.dtype))
            x_rc = self.submodule(self.rc(x[..., n_channels // 2:]).to(dtype=self.submodule.weight.dtype))
            x = torch.cat([x_fwd, self.rc(x_rc)], dim=-1)
        else:
            residual_fwd = x[..., :n_channels // 2] + residual[..., :n_channels // 2]
            x_fwd = self.submodule(residual_fwd.to(dtype=self.submodule.weight.dtype))

            residual_rc = self.rc(x[..., n_channels // 2:]) + self.rc(residual[..., n_channels // 2:])
            x_rc = self.submodule(residual_rc.to(dtype=self.submodule.weight.dtype))

            residual = torch.cat([residual_fwd, self.rc(residual_rc)], dim=-1)
            x = torch.cat([x_fwd, self.rc(x_rc)], dim=-1)

        return x if not prenorm else (x, residual)


class RCPSMambaBlock(nn.Module):
    def __init__(
            self,
            dim,
            mixer_cls,
            norm_cls=nn.LayerNorm,
            fused_add_norm=False,
            residual_in_fp32=False,
            device=None,  # Keep for consistency with original Mamba Block
            dtype=None,  # Keep for consistency with original Mamba Block
    ):
        """RCPS version of simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection.

        Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py
        """
        super().__init__()
        self.residual_in_fp32 = residual_in_fp32
        self.fused_add_norm = fused_add_norm
        self.mixer = RCPSWrapper(mixer_cls(dim))
        norm_f = norm_cls(dim)
        self.norm = norm_f if fused_add_norm else RCPSAddNormWrapper(norm_f)
        if self.fused_add_norm:
            assert RMSNorm is not None, "RMSNorm import fails"
            assert isinstance(
                self.norm, (nn.LayerNorm, RMSNorm)
            ), "Only LayerNorm and RMSNorm are supported for fused_add_norm"

    def forward(
        self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: hidden_states = Mixer(LN(residual)).
            inference_params: inference parameters for mixer.
        """
        if not self.fused_add_norm:
            hidden_states, residual = self.norm(hidden_states, residual=residual, prenorm=True)
            if self.residual_in_fp32:
                residual = residual.to(torch.float32)
        else:
            fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn

            hidden_states_fwd, residual_fwd = fused_add_norm_fn(
                hidden_states[..., hidden_states.shape[-1] // 2:],
                self.norm.weight,
                self.norm.bias,
                residual=residual[..., hidden_states.shape[-1] // 2:] if residual is not None else None,
                prenorm=True,
                residual_in_fp32=self.residual_in_fp32,
                eps=self.norm.eps,
            )

            hidden_states_rc, residual_rc = fused_add_norm_fn(
                hidden_states[..., :hidden_states.shape[-1] // 2].flip(dims=[-2, -1]),
                self.norm.weight,
                self.norm.bias,
                residual=residual[..., :hidden_states.shape[-1] // 2].flip(dims=[-2, -1]) if residual is not None else None,
                prenorm=True,
                residual_in_fp32=self.residual_in_fp32,
                eps=self.norm.eps,
            )
            hidden_states = torch.cat([hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1)
            residual = torch.cat([residual_fwd, residual_rc.flip(dims=[-2, -1])], dim=-1)
        hidden_states = self.mixer(hidden_states, inference_params=inference_params)
        return hidden_states, residual

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        """Allocate inference cache for mixer.

        Keep for compatibility with original Mamba Block.
        """
        return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)


class RCPSLMHead(nn.Module):
    """LM Head for reverse-complement equivariant inputs, which have dim * 2 relative to standard inputs."""
    def __init__(self, true_dim: int, vocab_size: int, complement_map: dict, **factory_kwargs):
        """
        `true_dim` corresponds to the actual dimensionality of the input were it not reverse-complement
        equivariant, i.e. 0.5 times the actual input dim.
        """
        super().__init__()
        self.register_buffer(
            "complement_map",
            torch.tensor(list(OrderedDict(complement_map).values()), dtype=torch.long)
        )
        self.true_dim = true_dim
        self.lm_head = nn.Linear(true_dim, vocab_size, bias=False, **factory_kwargs)

    @property
    def weight(self):
        """LM head weights."""
        return self.lm_head.weight

    def set_weight(self, value):
        """Set LM head weights."""
        self.lm_head.weight = value

    def forward(self, x):
        """
        Args:
            x: Input tensor of shape (batch_size, seq_len, dim), where dim = 2 * true_dim.
        """
        n_channels = x.shape[-1]
        assert n_channels == 2 * self.true_dim, "Input must have 2 * true_dim channels."
        fwd_logits = F.linear(x[..., :n_channels // 2], self.weight, bias=self.lm_head.bias)
        rc_logits = F.linear(
            torch.flip(x[..., n_channels // 2:], dims=[-1]),
            self.weight[self.complement_map, :],
            bias=self.lm_head.bias
        )
        return fwd_logits + rc_logits