willhe-xverse commited on
Commit
4cbddd1
1 Parent(s): 19c0e59

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -9,7 +9,7 @@ inference: false
9
 
10
  ## 更新信息
11
 
12
- - **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int4量化模型,支持vLLM推理xverse-65b量化模型。
13
  - **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
14
  - **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
15
  - **[2023/11/24]** 更新预训练数据的相关信息。
@@ -17,7 +17,7 @@ inference: false
17
 
18
  ## Update Information
19
 
20
- - **[2024/03/25]** Release the XVERSE-65B-Chat-GPTQ-Int4 quantification model, supporting vLLM inference for the xverse-65b quantification model.
21
  - **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
22
  - **[2023/11/29]** Update model architecture and additional pre-training data information.
23
  - **[2023/11/24]** Update the related information of the pre-training data.
 
9
 
10
  ## 更新信息
11
 
12
+ - **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int4量化模型,支持vLLM推理XVERSE-65B-Chat量化模型。
13
  - **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
14
  - **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
15
  - **[2023/11/24]** 更新预训练数据的相关信息。
 
17
 
18
  ## Update Information
19
 
20
+ - **[2024/03/25]** Release the XVERSE-65B-Chat-GPTQ-Int4 quantification model, supporting vLLM inference for the XVERSE-65B-Chat quantification model.
21
  - **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
22
  - **[2023/11/29]** Update model architecture and additional pre-training data information.
23
  - **[2023/11/24]** Update the related information of the pre-training data.