willhe-xverse
commited on
Commit
•
4cbddd1
1
Parent(s):
19c0e59
Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ inference: false
|
|
9 |
|
10 |
## 更新信息
|
11 |
|
12 |
-
- **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int4量化模型,支持vLLM推理
|
13 |
- **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
|
14 |
- **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
|
15 |
- **[2023/11/24]** 更新预训练数据的相关信息。
|
@@ -17,7 +17,7 @@ inference: false
|
|
17 |
|
18 |
## Update Information
|
19 |
|
20 |
-
- **[2024/03/25]** Release the XVERSE-65B-Chat-GPTQ-Int4 quantification model, supporting vLLM inference for the
|
21 |
- **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
|
22 |
- **[2023/11/29]** Update model architecture and additional pre-training data information.
|
23 |
- **[2023/11/24]** Update the related information of the pre-training data.
|
|
|
9 |
|
10 |
## 更新信息
|
11 |
|
12 |
+
- **[2024/03/25]** 发布XVERSE-65B-Chat-GPTQ-Int4量化模型,支持vLLM推理XVERSE-65B-Chat量化模型。
|
13 |
- **[2023/12/08]** 发布 **XVERSE-65B-2** 底座模型,该模型在前一版本的基础上进行了 **Continual Pre-Training**,训练总 token 量达到 **3.2** 万亿;模型各方面的能力均得到提升,尤其是数学和代码能力,在 GSM8K 上提升 **20**%,HumanEval 上提升 **41**%。
|
14 |
- **[2023/11/29]** 更新模型架构及更多底座数据的相关信息。
|
15 |
- **[2023/11/24]** 更新预训练数据的相关信息。
|
|
|
17 |
|
18 |
## Update Information
|
19 |
|
20 |
+
- **[2024/03/25]** Release the XVERSE-65B-Chat-GPTQ-Int4 quantification model, supporting vLLM inference for the XVERSE-65B-Chat quantification model.
|
21 |
- **[2023/12/08]** Released the **XVERSE-65B-2** base model. This model builds upon its predecessor through **Continual Pre-Training**, reaching a total training volume of **3.2** trillion tokens. It exhibits enhancements in all capabilities, particularly in mathematics and coding skills, with a **20%** improvement on the GSM8K benchmark and a **41%** increase on HumanEval.
|
22 |
- **[2023/11/29]** Update model architecture and additional pre-training data information.
|
23 |
- **[2023/11/24]** Update the related information of the pre-training data.
|