File size: 21,867 Bytes
6e00f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import logging
import math
import re
from typing import (
    List,
    Union,
    Any,
    Optional,
)

import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from transformers import PreTrainedTokenizer

logger = logging.getLogger(__name__)


def get_id_and_prob(spans, offset_map):
    prompt_length = 0
    for i in range(1, len(offset_map)):
        if offset_map[i] != [0, 0]:
            prompt_length += 1
        else:
            break

    for i in range(1, prompt_length + 1):
        offset_map[i][0] -= (prompt_length + 1)
        offset_map[i][1] -= (prompt_length + 1)

    sentence_id = []
    prob = []
    for start, end in spans:
        prob.append(start[1] * end[1])
        sentence_id.append(
            (offset_map[start[0]][0], offset_map[end[0]][1]))
    return sentence_id, prob


def get_span(start_ids, end_ids, with_prob=False):
    """
    Get span set from position start and end list.
    Args:
        start_ids (List[int]/List[tuple]): The start index list.
        end_ids (List[int]/List[tuple]): The end index list.
        with_prob (bool): If True, each element for start_ids and end_ids is a tuple aslike: (index, probability).
    Returns:
        set: The span set without overlapping, every id can only be used once.
    """
    if with_prob:
        start_ids = sorted(start_ids, key=lambda x: x[0])
        end_ids = sorted(end_ids, key=lambda x: x[0])
    else:
        start_ids = sorted(start_ids)
        end_ids = sorted(end_ids)

    start_pointer = 0
    end_pointer = 0
    len_start = len(start_ids)
    len_end = len(end_ids)
    couple_dict = {}

    # 将每一个span的首/尾token的id进行配对(就近匹配,默认没有overlap的情况)
    while start_pointer < len_start and end_pointer < len_end:
        if with_prob:
            start_id = start_ids[start_pointer][0]
            end_id = end_ids[end_pointer][0]
        else:
            start_id = start_ids[start_pointer]
            end_id = end_ids[end_pointer]

        if start_id == end_id:
            couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
            start_pointer += 1
            end_pointer += 1
            continue

        if start_id < end_id:
            couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
            start_pointer += 1
            continue

        if start_id > end_id:
            end_pointer += 1
            continue

    result = [(couple_dict[end], end) for end in couple_dict]
    result = set(result)
    return result


def get_bool_ids_greater_than(probs, limit=0.5, return_prob=False):
    """
    Get idx of the last dimension in probability arrays, which is greater than a limitation.
    Args:
        probs (List[List[float]]): The input probability arrays.
        limit (float): The limitation for probability.
        return_prob (bool): Whether to return the probability
    Returns:
        List[List[int]]: The index of the last dimension meet the conditions.
    """
    probs = np.array(probs)
    dim_len = len(probs.shape)
    if dim_len > 1:
        result = []
        for p in probs:
            result.append(get_bool_ids_greater_than(p, limit, return_prob))
        return result
    else:
        result = []
        for i, p in enumerate(probs):
            if p > limit:
                if return_prob:
                    result.append((i, p))
                else:
                    result.append(i)
        return result


def dbc2sbc(s):
    rs = ""
    for char in s:
        code = ord(char)
        if code == 0x3000:
            code = 0x0020
        else:
            code -= 0xfee0
        if not (0x0021 <= code <= 0x7e):
            rs += char
            continue
        rs += chr(code)
    return rs


def cut_chinese_sent(para):
    """
    Cut the Chinese sentences more precisely, reference to
    "https://blog.csdn.net/blmoistawinde/article/details/82379256".
    """
    para = re.sub(r'([。!?\?])([^”’])', r'\1\n\2', para)
    para = re.sub(r'(\.{6})([^”’])', r'\1\n\2', para)
    para = re.sub(r'(\…{2})([^”’])', r'\1\n\2', para)
    para = re.sub(r'([。!?\?][”’])([^,。!?\?])', r'\1\n\2', para)
    para = para.rstrip()
    return para.split("\n")


def auto_splitter(input_texts, max_text_len, split_sentence=False):
    """
    Split the raw texts automatically for model inference.
    Args:
        input_texts (List[str]): input raw texts.
        max_text_len (int): cutting length.
        split_sentence (bool): If True, sentence-level split will be performed.
    return:
        short_input_texts (List[str]): the short input texts for model inference.
        input_mapping (dict): mapping between raw text and short input texts.
    """
    input_mapping = {}
    short_input_texts = []
    cnt_short = 0
    for cnt_org, text in enumerate(input_texts):
        sens = cut_chinese_sent(text) if split_sentence else [text]
        for sen in sens:
            lens = len(sen)
            if lens <= max_text_len:
                short_input_texts.append(sen)
                if cnt_org in input_mapping:
                    input_mapping[cnt_org].append(cnt_short)
                else:
                    input_mapping[cnt_org] = [cnt_short]
                cnt_short += 1
            else:
                temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]

                short_input_texts.extend(temp_text_list)
                short_idx = cnt_short
                cnt_short += math.ceil(lens / max_text_len)
                temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
                if cnt_org in input_mapping:
                    input_mapping[cnt_org].extend(temp_text_id)
                else:
                    input_mapping[cnt_org] = temp_text_id
    return short_input_texts, input_mapping


class UIEDecoder(nn.Module):

    keys_to_ignore_on_gpu = ["offset_mapping", "texts"]

    @torch.inference_mode()
    def predict(
        self,
        tokenizer: PreTrainedTokenizer,
        texts: Union[List[str], str],
        schema: Optional[Any] = None,
        batch_size: int = 64,
        max_length: int = 512,
        split_sentence: bool = False,
        position_prob: float = 0.5,
        is_english: bool = False,
        disable_tqdm: bool = True,
    ) -> List[Any]:
        self.eval()
        self.tokenizer = tokenizer
        self.is_english = is_english
        if schema is not None:
            self.set_schema(schema)

        texts = texts
        if isinstance(texts, str):
            texts = [texts]
        return self._multi_stage_predict(
            texts, batch_size, max_length, split_sentence, position_prob, disable_tqdm
        )

    def set_schema(self, schema):
        if isinstance(schema, (dict, str)):
            schema = [schema]
        self._schema_tree = self._build_tree(schema)

    def _multi_stage_predict(
        self,
        texts: List[str],
        batch_size: int = 64,
        max_length: int = 512,
        split_sentence: bool = False,
        position_prob: float = 0.5,
        disable_tqdm: bool = True,
    ) -> List[Any]:
        """ Traversal the schema tree and do multi-stage prediction. """
        results = [{} for _ in range(len(texts))]
        if len(texts) < 1 or self._schema_tree is None:
            return results

        schema_list = self._schema_tree.children[:]
        while len(schema_list) > 0:
            node = schema_list.pop(0)
            examples = []
            input_map = {}
            cnt = 0
            idx = 0
            if not node.prefix:
                for data in texts:
                    examples.append({"text": data, "prompt": dbc2sbc(node.name)})
                    input_map[cnt] = [idx]
                    idx += 1
                    cnt += 1
            else:
                for pre, data in zip(node.prefix, texts):
                    if len(pre) == 0:
                        input_map[cnt] = []
                    else:
                        for p in pre:
                            if self.is_english:
                                if re.search(r'\[.*?\]$', node.name):
                                    prompt_prefix = node.name[:node.name.find("[", 1)].strip()
                                    cls_options = re.search(r'\[.*?\]$', node.name).group()
                                    # Sentiment classification of xxx [positive, negative]
                                    prompt = prompt_prefix + p + " " + cls_options
                                else:
                                    prompt = node.name + p
                            else:
                                prompt = p + node.name
                            examples.append(
                                {
                                    "text": data,
                                    "prompt": dbc2sbc(prompt)
                                }
                            )
                        input_map[cnt] = [i + idx for i in range(len(pre))]
                        idx += len(pre)
                    cnt += 1

            result_list = self._single_stage_predict(
                examples, batch_size, max_length, split_sentence, position_prob, disable_tqdm
            ) if examples else []
            if not node.parent_relations:
                relations = [[] for _ in range(len(texts))]
                for k, v in input_map.items():
                    for idx in v:
                        if len(result_list[idx]) == 0:
                            continue
                        if node.name not in results[k].keys():
                            results[k][node.name] = result_list[idx]
                        else:
                            results[k][node.name].extend(result_list[idx])
                    if node.name in results[k].keys():
                        relations[k].extend(results[k][node.name])
            else:
                relations = node.parent_relations
                for k, v in input_map.items():
                    for i in range(len(v)):
                        if len(result_list[v[i]]) == 0:
                            continue
                        if "relations" not in relations[k][i].keys():
                            relations[k][i]["relations"] = {node.name: result_list[v[i]]}
                        elif node.name not in relations[k][i]["relations"].keys():
                            relations[k][i]["relations"][node.name] = result_list[v[i]]
                        else:
                            relations[k][i]["relations"][node.name].extend(result_list[v[i]])

                new_relations = [[] for _ in range(len(texts))]
                for i in range(len(relations)):
                    for j in range(len(relations[i])):
                        if "relations" in relations[i][j].keys() and node.name in relations[i][j]["relations"].keys():
                            for k in range(len(relations[i][j]["relations"][node.name])):
                                new_relations[i].append(relations[i][j]["relations"][node.name][k])
                relations = new_relations

            prefix = [[] for _ in range(len(texts))]
            for k, v in input_map.items():
                for idx in v:
                    for i in range(len(result_list[idx])):
                        if self.is_english:
                            prefix[k].append(" of " + result_list[idx][i]["text"])
                        else:
                            prefix[k].append(result_list[idx][i]["text"] + "的")

            for child in node.children:
                child.prefix = prefix
                child.parent_relations = relations
                schema_list.append(child)

        return results

    def _convert_ids_to_results(self, examples, sentence_ids, probs):
        """ Convert ids to raw text in a single stage. """
        results = []
        for example, sentence_id, prob in zip(examples, sentence_ids, probs):
            if len(sentence_id) == 0:
                results.append([])
                continue
            result_list = []
            text = example["text"]
            prompt = example["prompt"]
            for i in range(len(sentence_id)):
                start, end = sentence_id[i]
                if start < 0 and end >= 0:
                    continue
                if end < 0:
                    start += len(prompt) + 1
                    end += len(prompt) + 1
                    result = {"text": prompt[start: end], "probability": prob[i]}
                else:
                    result = {"text": text[start: end], "start": start, "end": end, "probability": prob[i]}

                result_list.append(result)
            results.append(result_list)
        return results

    def _auto_splitter(self, input_texts, max_text_len, split_sentence=False):
        """
        Split the raw texts automatically for model inference.
        Args:
            input_texts (List[str]): input raw texts.
            max_text_len (int): cutting length.
            split_sentence (bool): If True, sentence-level split will be performed.
        return:
            short_input_texts (List[str]): the short input texts for model inference.
            input_mapping (dict): mapping between raw text and short input texts.
        """
        input_mapping = {}
        short_input_texts = []
        cnt_short = 0
        for cnt_org, text in enumerate(input_texts):
            sens = cut_chinese_sent(text) if split_sentence else [text]
            for sen in sens:
                lens = len(sen)
                if lens <= max_text_len:
                    short_input_texts.append(sen)
                    if cnt_org in input_mapping:
                        input_mapping[cnt_org].append(cnt_short)
                    else:
                        input_mapping[cnt_org] = [cnt_short]
                    cnt_short += 1
                else:
                    temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]

                    short_input_texts.extend(temp_text_list)
                    short_idx = cnt_short
                    cnt_short += math.ceil(lens / max_text_len)
                    temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
                    if cnt_org in input_mapping:
                        input_mapping[cnt_org].extend(temp_text_id)
                    else:
                        input_mapping[cnt_org] = temp_text_id
        return short_input_texts, input_mapping

    def _single_stage_predict(
        self,
        inputs: List[dict],
        batch_size: int = 64,
        max_length: int = 512,
        split_sentence: bool = False,
        position_prob: float = 0.5,
        disable_tqdm: bool = True,
    ):
        input_texts = []
        prompts = []
        for i in range(len(inputs)):
            input_texts.append(inputs[i]["text"])
            prompts.append(inputs[i]["prompt"])
        # max predict length should exclude the length of prompt and summary tokens
        max_predict_len = max_length - len(max(prompts)) - 3

        short_input_texts, input_mapping = self._auto_splitter(
            input_texts, max_predict_len, split_sentence=split_sentence
        )

        short_texts_prompts = []
        for k, v in input_mapping.items():
            short_texts_prompts.extend([prompts[k] for _ in range(len(v))])
        short_inputs = [
            {
                "text": short_input_texts[i],
                "prompt": short_texts_prompts[i]
            }
            for i in range(len(short_input_texts))
        ]

        encoded_inputs = self.tokenizer(
            text=short_texts_prompts,
            text_pair=short_input_texts,
            stride=2,
            truncation=True,
            max_length=max_length,
            padding="longest",
            add_special_tokens=True,
            return_offsets_mapping=True,
            return_tensors="np")
        offset_maps = encoded_inputs["offset_mapping"]

        start_prob_concat, end_prob_concat = [], []
        if disable_tqdm:
            batch_iterator = range(0, len(short_input_texts), batch_size)
        else:
            batch_iterator = tqdm(range(0, len(short_input_texts), batch_size), desc="Predicting", unit="batch")
        for batch_start in batch_iterator:
            batch = {
                key:
                    np.array(value[batch_start: batch_start + batch_size], dtype="int64")
                for key, value in encoded_inputs.items() if key not in self.keys_to_ignore_on_gpu
            }

            for k, v in batch.items():
                batch[k] = torch.LongTensor(v, device=self.device)

            outputs = self(**batch)
            start_prob, end_prob = outputs[0], outputs[1]
            if self.device != torch.device("cpu"):
                start_prob, end_prob = start_prob.cpu(), end_prob.cpu()
            start_prob_concat.append(start_prob.detach().numpy())
            end_prob_concat.append(end_prob.detach().numpy())

        start_prob_concat = np.concatenate(start_prob_concat)
        end_prob_concat = np.concatenate(end_prob_concat)

        start_ids_list = get_bool_ids_greater_than(start_prob_concat, limit=position_prob, return_prob=True)
        end_ids_list = get_bool_ids_greater_than(end_prob_concat, limit=position_prob, return_prob=True)

        input_ids = encoded_inputs['input_ids'].tolist()
        sentence_ids, probs = [], []
        for start_ids, end_ids, ids, offset_map in zip(start_ids_list, end_ids_list, input_ids, offset_maps):
            span_list = get_span(start_ids, end_ids, with_prob=True)
            sentence_id, prob = get_id_and_prob(span_list, offset_map.tolist())
            sentence_ids.append(sentence_id)
            probs.append(prob)

        results = self._convert_ids_to_results(short_inputs, sentence_ids, probs)
        results = self._auto_joiner(results, short_input_texts, input_mapping)
        return results

    def _auto_joiner(self, short_results, short_inputs, input_mapping):
        concat_results = []
        is_cls_task = False
        for short_result in short_results:
            if not short_result:
                continue
            elif 'start' not in short_result[0].keys() and 'end' not in short_result[0].keys():
                is_cls_task = True
                break
            else:
                break
        for k, vs in input_mapping.items():
            single_results = []
            if is_cls_task:
                cls_options = {}
                for v in vs:
                    if len(short_results[v]) == 0:
                        continue
                    if short_results[v][0]['text'] in cls_options:
                        cls_options[short_results[v][0]["text"]][0] += 1
                        cls_options[short_results[v][0]["text"]][1] += short_results[v][0]["probability"]

                    else:
                        cls_options[short_results[v][0]["text"]] = [1, short_results[v][0]["probability"]]

                if cls_options:
                    cls_res, cls_info = max(cls_options.items(), key=lambda x: x[1])
                    concat_results.append(
                        [
                            {"text": cls_res, "probability": cls_info[1] / cls_info[0]}
                        ]
                    )

                else:
                    concat_results.append([])
            else:
                offset = 0
                for v in vs:
                    if v == 0:
                        single_results = short_results[v]
                        offset += len(short_inputs[v])
                    else:
                        for i in range(len(short_results[v])):
                            if 'start' not in short_results[v][i] or 'end' not in short_results[v][i]:
                                continue
                            short_results[v][i]["start"] += offset
                            short_results[v][i]["end"] += offset
                        offset += len(short_inputs[v])
                        single_results.extend(short_results[v])
                concat_results.append(single_results)
        return concat_results

    @classmethod
    def _build_tree(cls, schema, name='root'):
        """
        Build the schema tree.
        """
        schema_tree = SchemaTree(name)
        for s in schema:
            if isinstance(s, str):
                schema_tree.add_child(SchemaTree(s))
            elif isinstance(s, dict):
                for k, v in s.items():
                    if isinstance(v, str):
                        child = [v]
                    elif isinstance(v, list):
                        child = v
                    else:
                        raise TypeError(
                            f"Invalid schema, value for each key:value pairs should be list or string"
                            f"but {type(v)} received")
                    schema_tree.add_child(cls._build_tree(child, name=k))
            else:
                raise TypeError(f"Invalid schema, element should be string or dict, but {type(s)} received")

        return schema_tree


class SchemaTree(object):
    """
    Implementation of SchemaTree
    """

    def __init__(self, name='root', children=None):
        self.name = name
        self.children = []
        self.prefix = None
        self.parent_relations = None
        if children is not None:
            for child in children:
                self.add_child(child)

    def __repr__(self):
        return self.name

    def add_child(self, node):
        assert isinstance(
            node, SchemaTree
        ), "The children of a node should be an instance of SchemaTree."
        self.children.append(node)