File size: 3,004 Bytes
5f43175 342bf20 5f43175 342bf20 5f43175 342bf20 5f43175 342bf20 eb3e840 5f43175 eb3e840 342bf20 5f43175 342bf20 5f43175 eb3e840 5f43175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_6_1
metrics:
- wer
model-index:
- name: Whisper Small Frisian 1h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 6.1
type: mozilla-foundation/common_voice_6_1
args: 'config: frisian, split: test'
metrics:
- name: Wer
type: wer
value: 47.79183746212796
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Frisian 1h
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 6.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9900
- Wer: 47.7918
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 2.4073 | 1.1236 | 100 | 2.2555 | 82.9549 |
| 1.5143 | 2.2472 | 200 | 1.6651 | 73.4557 |
| 1.1865 | 3.3708 | 300 | 1.4237 | 65.1256 |
| 0.9368 | 4.4944 | 400 | 1.2874 | 59.4832 |
| 0.8009 | 5.6180 | 500 | 1.1957 | 56.5461 |
| 0.6722 | 6.7416 | 600 | 1.1345 | 54.6890 |
| 0.5726 | 7.8652 | 700 | 1.0894 | 53.1919 |
| 0.5068 | 8.9888 | 800 | 1.0575 | 51.7769 |
| 0.4239 | 10.1124 | 900 | 1.0351 | 50.8002 |
| 0.3799 | 11.2360 | 1000 | 1.0197 | 49.9198 |
| 0.295 | 12.3596 | 1100 | 1.0110 | 49.3673 |
| 0.2852 | 13.4831 | 1200 | 1.0022 | 48.7507 |
| 0.2478 | 14.6067 | 1300 | 0.9965 | 48.3800 |
| 0.2267 | 15.7303 | 1400 | 0.9931 | 48.1911 |
| 0.1986 | 16.8539 | 1500 | 0.9916 | 48.1412 |
| 0.1922 | 17.9775 | 1600 | 0.9907 | 47.9558 |
| 0.1724 | 19.1011 | 1700 | 0.9905 | 47.8703 |
| 0.1709 | 20.2247 | 1800 | 0.9900 | 47.9059 |
| 0.1749 | 21.3483 | 1900 | 0.9900 | 47.7598 |
| 0.145 | 22.4719 | 2000 | 0.9900 | 47.7918 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|