|
--- |
|
license: bsd-3-clause |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: ast-finetuned-audioset-10-10-0.4593_ft_env_aug_0-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ast-finetuned-audioset-10-10-0.4593_ft_env_aug_0-2 |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6899 |
|
- Accuracy: 0.9643 |
|
- Precision: 0.9694 |
|
- Recall: 0.9643 |
|
- F1: 0.9631 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.0165 | 1.0 | 28 | 1.6252 | 0.4643 | 0.5373 | 0.4643 | 0.4711 | |
|
| 1.3702 | 2.0 | 56 | 1.0553 | 0.8571 | 0.8929 | 0.8571 | 0.8536 | |
|
| 0.8861 | 3.0 | 84 | 0.6899 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.5655 | 4.0 | 112 | 0.4766 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.4232 | 5.0 | 140 | 0.3403 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.3148 | 6.0 | 168 | 0.2679 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.2335 | 7.0 | 196 | 0.2239 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.176 | 8.0 | 224 | 0.1979 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.1624 | 9.0 | 252 | 0.1824 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
| 0.1466 | 10.0 | 280 | 0.1781 | 0.9643 | 0.9694 | 0.9643 | 0.9631 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.11.0 |
|
|