File size: 2,519 Bytes
4656a61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ast-finetuned-audioset-10-10-0.4593_ft_env_aug_0-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-finetuned-audioset-10-10-0.4593_ft_env_aug_0-2

This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6899
- Accuracy: 0.9643
- Precision: 0.9694
- Recall: 0.9643
- F1: 0.9631

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 2.0165        | 1.0   | 28   | 1.6252          | 0.4643   | 0.5373    | 0.4643 | 0.4711 |
| 1.3702        | 2.0   | 56   | 1.0553          | 0.8571   | 0.8929    | 0.8571 | 0.8536 |
| 0.8861        | 3.0   | 84   | 0.6899          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.5655        | 4.0   | 112  | 0.4766          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.4232        | 5.0   | 140  | 0.3403          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.3148        | 6.0   | 168  | 0.2679          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.2335        | 7.0   | 196  | 0.2239          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.176         | 8.0   | 224  | 0.1979          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.1624        | 9.0   | 252  | 0.1824          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |
| 0.1466        | 10.0  | 280  | 0.1781          | 0.9643   | 0.9694    | 0.9643 | 0.9631 |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.11.0