xn6o
/

English
File size: 4,721 Bytes
a2c9640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evaluate the Model #"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "import torch.nn.functional as F\n",
    "import torch.backends.cudnn as cudnn\n",
    "from collections import OrderedDict"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Data Preprocessing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files already downloaded and verified\n",
      "Files already downloaded and verified\n"
     ]
    }
   ],
   "source": [
    "import torchvision\n",
    "import torchvision.transforms as transforms\n",
    "\n",
    "transform_train = transforms.Compose([\n",
    "    transforms.RandomCrop(32, padding=4),\n",
    "    transforms.RandomHorizontalFlip(),\n",
    "    transforms.ToTensor(),\n",
    "    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),\n",
    "])\n",
    "\n",
    "transform_test = transforms.Compose([\n",
    "    transforms.ToTensor(),\n",
    "    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),\n",
    "])\n",
    "\n",
    "trainset = torchvision.datasets.CIFAR10(\n",
    "    root='./data', train=True, download=True, transform=transform_train)\n",
    "trainloader = torch.utils.data.DataLoader(\n",
    "    trainset, batch_size=128, shuffle=True, num_workers=4, pin_memory=True)\n",
    "\n",
    "testset = torchvision.datasets.CIFAR10(\n",
    "    root='./data', train=False, download=True, transform=transform_test)\n",
    "testloader = torch.utils.data.DataLoader(\n",
    "    testset, batch_size=100, shuffle=False, num_workers=4, pin_memory=True)\n",
    "\n",
    "classes  = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluate the Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch: 0, Test Loss: 0.2659624905884266, Accuracy: 94.24%\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "import torch.nn.functional as F\n",
    "import torch.backends.cudnn as cudnn\n",
    "from collections import OrderedDict\n",
    "from resnet import *\n",
    "\n",
    "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "\n",
    "net, name = ResNet18_with_name()\n",
    "\n",
    "# load checkpoint\n",
    "checkpoint = torch.load('./checkpoint/' + 'ResNet18.pth', weights_only=True)\n",
    "\n",
    "# remove 'module.' prefix\n",
    "new_state_dict = OrderedDict()\n",
    "for k, v in checkpoint['net'].items():\n",
    "    name = k[7:] if k.startswith('module.') else k  # remove 'module.' prefix\n",
    "    new_state_dict[name] = v\n",
    "\n",
    "# load best state_dict\n",
    "net.load_state_dict(new_state_dict)\n",
    "\n",
    "# move to  GPU if supported\n",
    "net = net.to(device)\n",
    "\n",
    "criterion = nn.CrossEntropyLoss()\n",
    "\n",
    "# test function\n",
    "def test(epoch):\n",
    "    net.eval()\n",
    "    test_loss = 0\n",
    "    correct = 0\n",
    "    total = 0\n",
    "    with torch.no_grad():\n",
    "        for batch_idx, (inputs, targets) in enumerate(testloader):\n",
    "            inputs, targets = inputs.to(device), targets.to(device)\n",
    "            outputs = net(inputs)\n",
    "            loss = criterion(outputs, targets)\n",
    "\n",
    "            test_loss += loss.item()\n",
    "            _, predicted = outputs.max(1)\n",
    "            total += targets.size(0)\n",
    "            correct += predicted.eq(targets).sum().item()\n",
    "\n",
    "    print(f'Epoch: {epoch}, Test Loss: {test_loss / (batch_idx + 1)}, Accuracy: {100. * correct / total}%')\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "test(0)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}