File size: 8,743 Bytes
e1aaaac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""
Based on: https://github.com/lucidrains/flamingo-pytorch
"""

import torch
from einops import rearrange, repeat
from einops_exts import rearrange_many
from torch import einsum, nn


def exists(val):
    return val is not None


def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm_media = nn.LayerNorm(dim)
        self.norm_latents = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, n1, D)
            latent (torch.Tensor): latent features
                shape (b, T, n2, D)
        """
        x = self.norm_media(x)
        latents = self.norm_latents(latents)

        h = self.heads

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)
        q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
        q = q * self.scale

        # attention
        sim = einsum("... i d, ... j d  -> ... i j", q, k)
        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        out = einsum("... i j, ... j d -> ... i d", attn, v)
        out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
        return self.to_out(out)


class PerceiverResampler(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth=6,
        dim_head=64,
        heads=8,
        num_latents=64,
        max_num_media=None,
        max_num_frames=None,
        ff_mult=4,
    ):
        super().__init__()
        self.latents = nn.Parameter(torch.randn(num_latents, dim))
        self.frame_embs = (
            nn.Parameter(torch.randn(max_num_frames, dim))
            if exists(max_num_frames)
            else None
        )
        self.media_time_embs = (
            nn.Parameter(torch.randn(max_num_media, 1, dim))
            if exists(max_num_media)
            else None
        )

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                        FeedForward(dim=dim, mult=ff_mult),
                    ]
                )
            )

        self.norm = nn.LayerNorm(dim)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, T, F, v, D)
        Returns:
            shape (b, T, n, D) where n is self.num_latents
        """
        b, T, F, v = x.shape[:4]

        # frame and media time embeddings
        if exists(self.frame_embs):
            frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
            x = x + frame_embs
        x = rearrange(
            x, "b T F v d -> b T (F v) d"
        )  # flatten the frame and spatial dimensions
        if exists(self.media_time_embs):
            x = x + self.media_time_embs[:T]

        # blocks
        latents = repeat(self.latents, "n d -> b T n d", b=b, T=T)
        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents
        return self.norm(latents)


# gated cross attention
class MaskedCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_visual,
        dim_head=64,
        heads=8,
        only_attend_immediate_media=True,
    ):
        super().__init__()
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

        # whether for text to only attend to immediate preceding image, or all previous images
        self.only_attend_immediate_media = only_attend_immediate_media

    def forward(self, x, media, media_locations=None, use_cached_media=False):
        """
        Args:
            x (torch.Tensor): text features
                shape (B, T_txt, D_txt)
            media (torch.Tensor): image features
                shape (B, T_img, n, D_img) where n is the dim of the latents
            media_locations: boolean mask identifying the media tokens in x
                shape (B, T_txt)
            use_cached_media: bool
                If true, treat all of x as if they occur after the last media
                registered in media_locations. T_txt does not need to exactly
                equal media_locations.shape[1] in this case
        """

        if not use_cached_media:
            assert (
                media_locations.shape[1] == x.shape[1]
            ), f"media_location.shape is {media_locations.shape} but x.shape is {x.shape}"

        T_txt = x.shape[1]
        _, T_img, n = media.shape[:3]
        h = self.heads

        x = self.norm(x)

        q = self.to_q(x)
        media = rearrange(media, "b t n d -> b (t n) d")

        k, v = self.to_kv(media).chunk(2, dim=-1)
        q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)

        q = q * self.scale

        sim = einsum("... i d, ... j d -> ... i j", q, k)

        if exists(media_locations):
            media_time = torch.arange(T_img, device=x.device) + 1

            if use_cached_media:
                # text time is set to the last cached media location
                text_time = repeat(
                    torch.count_nonzero(media_locations, dim=1),
                    "b -> b i",
                    i=T_txt,
                )
            else:
                # at each boolean of True, increment the time counter (relative to media time)
                text_time = media_locations.cumsum(dim=-1)

            # text time must equal media time if only attending to most immediate image
            # otherwise, as long as text time is greater than media time (if attending to all previous images / media)
            mask_op = torch.eq if self.only_attend_immediate_media else torch.ge

            text_to_media_mask = mask_op(
                rearrange(text_time, "b i -> b 1 i 1"),
                repeat(media_time, "j -> 1 1 1 (j n)", n=n),
            )
            sim = sim.masked_fill(~text_to_media_mask, -torch.finfo(sim.dtype).max)

        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        if exists(media_locations) and self.only_attend_immediate_media:
            # any text without a preceding media needs to have attention zeroed out
            text_without_media_mask = text_time == 0
            text_without_media_mask = rearrange(
                text_without_media_mask, "b i -> b 1 i 1"
            )
            attn = attn.masked_fill(text_without_media_mask, 0.0)

        out = einsum("... i j, ... j d -> ... i d", attn, v)
        out = rearrange(out, "b h n d -> b n (h d)")
        return self.to_out(out)


class GatedCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_visual,
        dim_head=64,
        heads=8,
        ff_mult=4,
        only_attend_immediate_media=True,
    ):
        super().__init__()
        self.attn = MaskedCrossAttention(
            dim=dim,
            dim_visual=dim_visual,
            dim_head=dim_head,
            heads=heads,
            only_attend_immediate_media=only_attend_immediate_media,
        )
        self.attn_gate = nn.Parameter(torch.tensor([0.0]))

        self.ff = FeedForward(dim, mult=ff_mult)
        self.ff_gate = nn.Parameter(torch.tensor([0.0]))

    def forward(
        self,
        x,
        media,
        media_locations=None,
        use_cached_media=False,
    ):
        x = (
            self.attn(
                x,
                media,
                media_locations=media_locations,
                use_cached_media=use_cached_media,
            )
            * self.attn_gate.tanh()
            + x
        )
        x = self.ff(x) * self.ff_gate.tanh() + x

        return x