File size: 7,696 Bytes
e1aaaac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import copy
import os

from typing import List

import torch

from torchvision.transforms import transforms

from open_flamingo.eval.eval_model import BaseEvalModel
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init

from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle


class EvalModelLLAVA(BaseEvalModel):
    """LLaVA model evaluation.

    Attributes:
      model (nn.Module): Underlying Torch model.
      tokenizer (transformers.PreTrainedTokenizer): Tokenizer for model.
      device: Index of GPU to use, or the string "CPU"
    """

    def __init__(self, model_args):
        super().__init__(model_args)
        disable_torch_init()
        model_path = os.path.expanduser(model_args["model_path"])
        model_name = get_model_name_from_path(model_path)
        self.model, self.image_processor, self.tokenizer, context_len = load_pretrained_model(
            model_path, model_args.get("model_base"), model_name, pretrained_rob_path=model_args["vision_encoder_pretrained"],
            dtype=model_args["precision"]
            )
        self.image_processor.do_normalize = False
        self.normalizer = transforms.Normalize(
            mean=self.image_processor.image_mean, std=self.image_processor.image_std
            )  # we need to normalize in the forward pass, so that the threat model is consistent
        model_args["temperature"] = float(model_args["temperature"])
        model_args["num_beams"] = int(model_args["num_beams"])
        self.model_args = model_args
        self.conv_mode = "vicuna_v1"
        if model_args["precision"] == "float16":
            self.cast_dtype = torch.float16
        elif model_args["precision"] == "float32":
            self.cast_dtype = torch.float32
        else:
            raise ValueError(f"Unknown dtype: {model_args['precision']}")

        self.dataset_name = model_args.get("dataset_name")

        self.stop_str = conv_templates[self.conv_mode].sep if conv_templates[self.conv_mode].sep_style != SeparatorStyle.TWO else conv_templates[self.conv_mode].sep2
        self.stop_token_id = self.tokenizer.convert_tokens_to_ids(self.stop_str)

    @torch.no_grad()
    def get_outputs(
        self,
        batch_text,  # List[conv object]
        batch_images: torch.Tensor,
        min_generation_length: int,
        max_generation_length: int,
        **kwargs,
    ) -> List[str]:
        assert len(batch_text) == 1, "Only support batch size 1 (yet)"
        assert 0. <= batch_images.min() and batch_images.max() <= 1., "Images must be in image space"

        #prompt = batch_text.get_prompt()
        input_ids = self._prepare_text(batch_text)

        batch_images = self.normalizer(batch_images)
        output_ids = self.model.generate(
            input_ids,
            images=batch_images.to(dtype=self.cast_dtype, device='cuda', non_blocking=True),
            do_sample=True if self.model_args["temperature"] > 0 else False,
            temperature=self.model_args["temperature"],
            top_p=self.model_args.get("top_p"),
            num_beams=self.model_args["num_beams"],
            min_new_tokens=min_generation_length,
            max_new_tokens=max_generation_length,
            use_cache=False
        )

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids")
        outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()

        if outputs.endswith(self.stop_str):
            outputs = outputs[:-len(self.stop_str)]
        outputs = outputs.strip()

        return [outputs]

    def __call__(self, images_unnorm):
        assert self.input_ids is not None
        assert self.attention_mask is not None
        assert self.labels is not None
        assert 0. <= images_unnorm.min() and images_unnorm.max() <= 1., "Images must be in image space"
        assert len(images_unnorm.shape) == 4, "[b, c, h, w]"

        out = self.model(
            input_ids=self.input_ids,
            attention_mask=self.attention_mask,
            past_key_values=self.past_key_values,
            inputs_embeds=None,
            labels=self.labels,
            images=self.normalizer(images_unnorm),
        )
        return out.loss.unsqueeze(0)

    def set_inputs(
        self,
        batch_text,
        past_key_values: torch.Tensor = None,
        to_device: bool = False,
    ):
        self.input_ids = self._prepare_text(batch_text)

        context_only = batch_text[0].get_prompt().split("ASSISTANT:")[0] + "ASSISTANT:"
        context_len = len(self.tokenizer.encode(context_only))

        labels = copy.deepcopy(self.input_ids)
        labels[:, :context_len] = IGNORE_INDEX
        # labels[labels == self.stop_token_id] = IGNORE_INDEX
        # print(batch_text[0].get_prompt())
        # print(self.tokenizer.decode(labels[labels != IGNORE_INDEX]))
        self.labels = labels
        self.attention_mask = self.input_ids.ne(self.tokenizer.pad_token_id)
        self.past_key_values = past_key_values


    def _prepare_images(self, batch: List[List[torch.Tensor]]) -> torch.Tensor:
        assert len(batch) == 1, "Only support batch size 1 (yet)"
        image_tensor = process_images(batch[0], self.image_processor, self.model.config)
        return image_tensor

    def _prepare_text(self, convs):
        input_ids = [
            tokenizer_image_token(conv.get_prompt(), self.tokenizer, return_tensors='pt') for conv in convs
        ]
        input_ids = torch.stack(input_ids, dim=0).to(device='cuda', non_blocking=True)
        return input_ids

    def get_vqa_prompt(self, question, answer=None) -> str:
        if self.dataset_name == "vizwiz":
            self.prompt_suffix = "\nWhen the provided information is insufficient, respond with 'Unanswerable'.\nAnswer the question using a single word or phrase."
        elif self.dataset_name == "textvqa":
            self.prompt_suffix = "\nAnswer the question using a single word or phrase."
        elif self.dataset_name == "vqav2":
            self.prompt_suffix = "\nAnswer the question using a single word or phrase."
        else:
            raise ValueError(f"Unknown dataset: {self.dataset_name}")
            self.prompt_suffix = ""
            print(f"Unknown dataset: {DATASET_NAME}, using no prompt suffix.")

        qs = question + self.prompt_suffix

        if self.model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[self.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], answer)

        return conv

    def get_caption_prompt(self, caption=None) -> str:
        qs = "Provide a short caption for this image."

        if self.model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[self.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], caption)

        return conv