File size: 16,502 Bytes
e1aaaac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import math
import time

import numpy as np
import torch

from .other_utils import Logger
from autoattack import checks
from autoattack.state import EvaluationState


class AutoAttack():
    def __init__(self, model, norm='Linf', eps=.3, seed=None, verbose=True,
                 attacks_to_run=[], version='standard', is_tf_model=False,
                 device='cuda', log_path=None, alpha=None, iterations_apgd=100, use_rs=True):
        self.model = model
        self.norm = norm
        assert norm in ['Linf', 'L2', 'L1']
        self.epsilon = eps
        self.seed = seed
        self.verbose = verbose
        self.attacks_to_run = attacks_to_run
        self.version = version
        self.is_tf_model = is_tf_model
        self.device = device
        self.logger = Logger(log_path)
        print(f'[alpha] {alpha}')

        if version in ['standard', 'plus', 'rand'] and attacks_to_run != []:
            raise ValueError("attacks_to_run will be overridden unless you use version='custom'")
        
        if not self.is_tf_model:
            from .autopgd_base import APGDAttack
            self.apgd = APGDAttack(self.model, n_restarts=5, n_iter=iterations_apgd, verbose=False,
                eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed,
                device=self.device, logger=self.logger, alpha=alpha, use_rs=use_rs)

            from .fab_pt import FABAttack_PT
            self.fab = FABAttack_PT(self.model, n_restarts=5, n_iter=100, eps=self.epsilon, seed=self.seed,
                norm=self.norm, verbose=False, device=self.device)
        
            from .square import SquareAttack
            self.square = SquareAttack(self.model, p_init=.8, n_queries=5000, eps=self.epsilon, norm=self.norm,
                n_restarts=1, seed=self.seed, verbose=False, device=self.device, resc_schedule=False)
                
            from .autopgd_base import APGDAttack_targeted
            self.apgd_targeted = APGDAttack_targeted(self.model, n_restarts=1, n_iter=iterations_apgd, verbose=False,
                eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
                logger=self.logger, alpha=alpha, use_rs=use_rs)

        else:
            from .autopgd_base import APGDAttack
            self.apgd = APGDAttack(self.model, n_restarts=5, n_iter=iterations_apgd, verbose=False,
                eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
                is_tf_model=True, logger=self.logger, alpha=alpha, use_rs=use_rs)

            from .fab_tf import FABAttack_TF
            self.fab = FABAttack_TF(self.model, n_restarts=5, n_iter=100, eps=self.epsilon, seed=self.seed,
                norm=self.norm, verbose=False, device=self.device)
        
            from .square import SquareAttack
            self.square = SquareAttack(self.model.predict, p_init=.8, n_queries=5000, eps=self.epsilon, norm=self.norm,
                n_restarts=1, seed=self.seed, verbose=False, device=self.device, resc_schedule=False)
                
            from .autopgd_base import APGDAttack_targeted
            self.apgd_targeted = APGDAttack_targeted(self.model, n_restarts=1, n_iter=iterations_apgd, verbose=False,
                eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
                is_tf_model=True, logger=self.logger, alpha=alpha, use_rs=use_rs)

        if version in ['standard', 'plus', 'rand']:
            self.set_version(version)
        
    def get_logits(self, x):
        if not self.is_tf_model:
            return self.model(x)
        else:
            return self.model.predict(x)
    
    def get_seed(self):
        return time.time() if self.seed is None else self.seed
    
    def run_standard_evaluation(self,
                                x_orig,
                                y_orig,
                                bs=250,
                                return_labels=False,
                                state_path=None):
        if state_path is not None and state_path.exists():
            state = EvaluationState.from_disk(state_path)
            if set(self.attacks_to_run) != state.attacks_to_run:
                raise ValueError("The state was created with a different set of attacks "
                                 "to run. You are probably using the wrong state file.")
            if self.verbose:
                self.logger.log("Restored state from {}".format(state_path))
                self.logger.log("Since the state has been restored, **only** "
                                "the adversarial examples from the current run "
                                "are going to be returned.")
        else:
            state = EvaluationState(set(self.attacks_to_run), path=state_path)
            state.to_disk()
            if self.verbose and state_path is not None:
                self.logger.log("Created state in {}".format(state_path))                                

        attacks_to_run = list(filter(lambda attack: attack not in state.run_attacks, self.attacks_to_run))
        if self.verbose:
            self.logger.log('using {} version including {}.'.format(self.version,
                  ', '.join(attacks_to_run)))
            if state.run_attacks:
                self.logger.log('{} was/were already run.'.format(', '.join(state.run_attacks)))

        # checks on type of defense
        if self.version != 'rand':
            checks.check_randomized(self.get_logits, x_orig[:bs].to(self.device),
                y_orig[:bs].to(self.device), bs=bs, logger=self.logger)
        n_cls = checks.check_range_output(self.get_logits, x_orig[:bs].to(self.device),
            logger=self.logger)
        checks.check_dynamic(self.model, x_orig[:bs].to(self.device), self.is_tf_model,
            logger=self.logger)
        checks.check_n_classes(n_cls, self.attacks_to_run, self.apgd_targeted.n_target_classes,
            self.fab.n_target_classes, logger=self.logger)
        
        with torch.no_grad():
            # calculate accuracy
            n_batches = int(np.ceil(x_orig.shape[0] / bs))
            if state.robust_flags is None:
                robust_flags = torch.zeros(x_orig.shape[0], dtype=torch.bool, device=x_orig.device)
                y_adv = torch.empty_like(y_orig)
                for batch_idx in range(n_batches):
                    start_idx = batch_idx * bs
                    end_idx = min( (batch_idx + 1) * bs, x_orig.shape[0])

                    x = x_orig[start_idx:end_idx, :].clone().to(self.device)
                    y = y_orig[start_idx:end_idx].clone().to(self.device)
                    output = self.get_logits(x).max(dim=1)[1]
                    y_adv[start_idx: end_idx] = output
                    correct_batch = y.eq(output)
                    robust_flags[start_idx:end_idx] = correct_batch.detach().to(robust_flags.device)

                state.robust_flags = robust_flags
                robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
                robust_accuracy_dict = {'clean': robust_accuracy}
                state.clean_accuracy = robust_accuracy
                
                if self.verbose:
                    self.logger.log('initial accuracy: {:.2%}'.format(robust_accuracy))
            else:
                robust_flags = state.robust_flags.to(x_orig.device)
                robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
                robust_accuracy_dict = {'clean': state.clean_accuracy}
                if self.verbose:
                    self.logger.log('initial clean accuracy: {:.2%}'.format(state.clean_accuracy))
                    self.logger.log('robust accuracy at the time of restoring the state: {:.2%}'.format(robust_accuracy))
                    
            x_adv = x_orig.clone().detach()
            startt = time.time()
            for attack in attacks_to_run:
                # item() is super important as pytorch int division uses floor rounding
                num_robust = torch.sum(robust_flags).item()

                if num_robust == 0:
                    break

                n_batches = int(np.ceil(num_robust / bs))

                robust_lin_idcs = torch.nonzero(robust_flags, as_tuple=False)
                if num_robust > 1:
                    robust_lin_idcs.squeeze_()
                
                for batch_idx in range(n_batches):
                    start_idx = batch_idx * bs
                    end_idx = min((batch_idx + 1) * bs, num_robust)

                    batch_datapoint_idcs = robust_lin_idcs[start_idx:end_idx]
                    if len(batch_datapoint_idcs.shape) > 1:
                        batch_datapoint_idcs.squeeze_(-1)
                    x = x_orig[batch_datapoint_idcs, :].clone().to(self.device)
                    y = y_orig[batch_datapoint_idcs].clone().to(self.device)

                    # make sure that x is a 4d tensor even if there is only a single datapoint left
                    if len(x.shape) == 3:
                        x.unsqueeze_(dim=0)
                    
                    # run attack
                    if attack == 'apgd-ce':
                        # apgd on cross-entropy loss
                        self.apgd.loss = 'ce'
                        self.apgd.seed = self.get_seed()
                        adv_curr = self.apgd.perturb(x, y) #cheap=True
                    
                    elif attack == 'apgd-dlr':
                        # apgd on dlr loss
                        self.apgd.loss = 'dlr'
                        self.apgd.seed = self.get_seed()
                        adv_curr = self.apgd.perturb(x, y) #cheap=True
                    
                    elif attack == 'fab':
                        # fab
                        self.fab.targeted = False
                        self.fab.seed = self.get_seed()
                        adv_curr = self.fab.perturb(x, y)
                    
                    elif attack == 'square':
                        # square
                        self.square.seed = self.get_seed()
                        adv_curr = self.square.perturb(x, y)
                    
                    elif attack == 'apgd-t':
                        # targeted apgd
                        self.apgd_targeted.seed = self.get_seed()
                        adv_curr = self.apgd_targeted.perturb(x, y) #cheap=True
                    
                    elif attack == 'fab-t':
                        # fab targeted
                        self.fab.targeted = True
                        self.fab.n_restarts = 1
                        self.fab.seed = self.get_seed()
                        adv_curr = self.fab.perturb(x, y)
                    
                    else:
                        raise ValueError('Attack not supported')
                
                    output = self.get_logits(adv_curr).max(dim=1)[1]
                    false_batch = ~y.eq(output).to(robust_flags.device)
                    non_robust_lin_idcs = batch_datapoint_idcs[false_batch]
                    robust_flags[non_robust_lin_idcs] = False
                    state.robust_flags = robust_flags

                    x_adv[non_robust_lin_idcs] = adv_curr[false_batch].detach().to(x_adv.device)
                    y_adv[non_robust_lin_idcs] = output[false_batch].detach().to(x_adv.device)

                    if self.verbose:
                        num_non_robust_batch = torch.sum(false_batch)    
                        self.logger.log('{} - {}/{} - {} out of {} successfully perturbed'.format(
                            attack, batch_idx + 1, n_batches, num_non_robust_batch, x.shape[0]))
                
                robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
                robust_accuracy_dict[attack] = robust_accuracy
                state.add_run_attack(attack)
                if self.verbose:
                    self.logger.log('robust accuracy after {}: {:.2%} (total time {:.1f} s)'.format(
                        attack.upper(), robust_accuracy, time.time() - startt))
                    
            # check about square
            checks.check_square_sr(robust_accuracy_dict, logger=self.logger)
            state.to_disk(force=True)
            
            # final check
            if self.verbose:
                if self.norm == 'Linf':
                    res = (x_adv - x_orig).abs().reshape(x_orig.shape[0], -1).max(1)[0]
                elif self.norm == 'L2':
                    res = ((x_adv - x_orig) ** 2).reshape(x_orig.shape[0], -1).sum(-1).sqrt()
                elif self.norm == 'L1':
                    res = (x_adv - x_orig).abs().reshape(x_orig.shape[0], -1).sum(dim=-1)
                self.logger.log('max {} perturbation: {:.5f}, nan in tensor: {}, max: {:.5f}, min: {:.5f}'.format(
                    self.norm, res.max(), (x_adv != x_adv).sum(), x_adv.max(), x_adv.min()))
                self.logger.log('robust accuracy: {:.2%}'.format(robust_accuracy))
        if return_labels:
            return x_adv, y_adv
        else:
            return x_adv
        
    def clean_accuracy(self, x_orig, y_orig, bs=250):
        n_batches = math.ceil(x_orig.shape[0] / bs)
        acc = 0.
        for counter in range(n_batches):
            x = x_orig[counter * bs:min((counter + 1) * bs, x_orig.shape[0])].clone().to(self.device)
            y = y_orig[counter * bs:min((counter + 1) * bs, x_orig.shape[0])].clone().to(self.device)
            output = self.get_logits(x)
            acc += (output.max(1)[1] == y).float().sum()
            
        if self.verbose:
            print('clean accuracy: {:.2%}'.format(acc / x_orig.shape[0]))
        
        return acc.item() / x_orig.shape[0]
        
    def run_standard_evaluation_individual(self, x_orig, y_orig, bs=250, return_labels=False):
        if self.verbose:
            print('using {} version including {}'.format(self.version,
                ', '.join(self.attacks_to_run)))
        
        l_attacks = self.attacks_to_run
        adv = {}
        verbose_indiv = self.verbose
        self.verbose = False
        
        for c in l_attacks:
            startt = time.time()
            self.attacks_to_run = [c]
            x_adv, y_adv = self.run_standard_evaluation(x_orig, y_orig, bs=bs, return_labels=True)
            if return_labels:
                adv[c] = (x_adv, y_adv)
            else:
                adv[c] = x_adv
            if verbose_indiv:    
                acc_indiv  = self.clean_accuracy(x_adv, y_orig, bs=bs)
                space = '\t \t' if c == 'fab' else '\t'
                self.logger.log('robust accuracy by {} {} {:.2%} \t (time attack: {:.1f} s)'.format(
                    c.upper(), space, acc_indiv,  time.time() - startt))
        
        return adv
        
    def set_version(self, version='standard'):
        if self.verbose:
            print('setting parameters for {} version'.format(version))
        
        if version == 'standard':
            self.attacks_to_run = ['apgd-ce', 'apgd-t', 'fab-t', 'square']
            if self.norm in ['Linf', 'L2']:
                self.apgd.n_restarts = 1
                self.apgd_targeted.n_target_classes = 9
            elif self.norm in ['L1']:
                self.apgd.use_largereps = True
                self.apgd_targeted.use_largereps = True
                self.apgd.n_restarts = 5
                self.apgd_targeted.n_target_classes = 5
            self.fab.n_restarts = 1
            self.apgd_targeted.n_restarts = 1
            self.fab.n_target_classes = 9
            #self.apgd_targeted.n_target_classes = 9
            self.square.n_queries = 5000
        
        elif version == 'plus':
            self.attacks_to_run = ['apgd-ce', 'apgd-dlr', 'fab', 'square', 'apgd-t', 'fab-t']
            self.apgd.n_restarts = 5
            self.fab.n_restarts = 5
            self.apgd_targeted.n_restarts = 1
            self.fab.n_target_classes = 9
            self.apgd_targeted.n_target_classes = 9
            self.square.n_queries = 5000
            if not self.norm in ['Linf', 'L2']:
                print('"{}" version is used with {} norm: please check'.format(
                    version, self.norm))
        
        elif version == 'rand':
            self.attacks_to_run = ['apgd-ce', 'apgd-dlr']
            self.apgd.n_restarts = 1
            self.apgd.eot_iter = 20