File size: 16,502 Bytes
e1aaaac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import math
import time
import numpy as np
import torch
from .other_utils import Logger
from autoattack import checks
from autoattack.state import EvaluationState
class AutoAttack():
def __init__(self, model, norm='Linf', eps=.3, seed=None, verbose=True,
attacks_to_run=[], version='standard', is_tf_model=False,
device='cuda', log_path=None, alpha=None, iterations_apgd=100, use_rs=True):
self.model = model
self.norm = norm
assert norm in ['Linf', 'L2', 'L1']
self.epsilon = eps
self.seed = seed
self.verbose = verbose
self.attacks_to_run = attacks_to_run
self.version = version
self.is_tf_model = is_tf_model
self.device = device
self.logger = Logger(log_path)
print(f'[alpha] {alpha}')
if version in ['standard', 'plus', 'rand'] and attacks_to_run != []:
raise ValueError("attacks_to_run will be overridden unless you use version='custom'")
if not self.is_tf_model:
from .autopgd_base import APGDAttack
self.apgd = APGDAttack(self.model, n_restarts=5, n_iter=iterations_apgd, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed,
device=self.device, logger=self.logger, alpha=alpha, use_rs=use_rs)
from .fab_pt import FABAttack_PT
self.fab = FABAttack_PT(self.model, n_restarts=5, n_iter=100, eps=self.epsilon, seed=self.seed,
norm=self.norm, verbose=False, device=self.device)
from .square import SquareAttack
self.square = SquareAttack(self.model, p_init=.8, n_queries=5000, eps=self.epsilon, norm=self.norm,
n_restarts=1, seed=self.seed, verbose=False, device=self.device, resc_schedule=False)
from .autopgd_base import APGDAttack_targeted
self.apgd_targeted = APGDAttack_targeted(self.model, n_restarts=1, n_iter=iterations_apgd, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
logger=self.logger, alpha=alpha, use_rs=use_rs)
else:
from .autopgd_base import APGDAttack
self.apgd = APGDAttack(self.model, n_restarts=5, n_iter=iterations_apgd, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
is_tf_model=True, logger=self.logger, alpha=alpha, use_rs=use_rs)
from .fab_tf import FABAttack_TF
self.fab = FABAttack_TF(self.model, n_restarts=5, n_iter=100, eps=self.epsilon, seed=self.seed,
norm=self.norm, verbose=False, device=self.device)
from .square import SquareAttack
self.square = SquareAttack(self.model.predict, p_init=.8, n_queries=5000, eps=self.epsilon, norm=self.norm,
n_restarts=1, seed=self.seed, verbose=False, device=self.device, resc_schedule=False)
from .autopgd_base import APGDAttack_targeted
self.apgd_targeted = APGDAttack_targeted(self.model, n_restarts=1, n_iter=iterations_apgd, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
is_tf_model=True, logger=self.logger, alpha=alpha, use_rs=use_rs)
if version in ['standard', 'plus', 'rand']:
self.set_version(version)
def get_logits(self, x):
if not self.is_tf_model:
return self.model(x)
else:
return self.model.predict(x)
def get_seed(self):
return time.time() if self.seed is None else self.seed
def run_standard_evaluation(self,
x_orig,
y_orig,
bs=250,
return_labels=False,
state_path=None):
if state_path is not None and state_path.exists():
state = EvaluationState.from_disk(state_path)
if set(self.attacks_to_run) != state.attacks_to_run:
raise ValueError("The state was created with a different set of attacks "
"to run. You are probably using the wrong state file.")
if self.verbose:
self.logger.log("Restored state from {}".format(state_path))
self.logger.log("Since the state has been restored, **only** "
"the adversarial examples from the current run "
"are going to be returned.")
else:
state = EvaluationState(set(self.attacks_to_run), path=state_path)
state.to_disk()
if self.verbose and state_path is not None:
self.logger.log("Created state in {}".format(state_path))
attacks_to_run = list(filter(lambda attack: attack not in state.run_attacks, self.attacks_to_run))
if self.verbose:
self.logger.log('using {} version including {}.'.format(self.version,
', '.join(attacks_to_run)))
if state.run_attacks:
self.logger.log('{} was/were already run.'.format(', '.join(state.run_attacks)))
# checks on type of defense
if self.version != 'rand':
checks.check_randomized(self.get_logits, x_orig[:bs].to(self.device),
y_orig[:bs].to(self.device), bs=bs, logger=self.logger)
n_cls = checks.check_range_output(self.get_logits, x_orig[:bs].to(self.device),
logger=self.logger)
checks.check_dynamic(self.model, x_orig[:bs].to(self.device), self.is_tf_model,
logger=self.logger)
checks.check_n_classes(n_cls, self.attacks_to_run, self.apgd_targeted.n_target_classes,
self.fab.n_target_classes, logger=self.logger)
with torch.no_grad():
# calculate accuracy
n_batches = int(np.ceil(x_orig.shape[0] / bs))
if state.robust_flags is None:
robust_flags = torch.zeros(x_orig.shape[0], dtype=torch.bool, device=x_orig.device)
y_adv = torch.empty_like(y_orig)
for batch_idx in range(n_batches):
start_idx = batch_idx * bs
end_idx = min( (batch_idx + 1) * bs, x_orig.shape[0])
x = x_orig[start_idx:end_idx, :].clone().to(self.device)
y = y_orig[start_idx:end_idx].clone().to(self.device)
output = self.get_logits(x).max(dim=1)[1]
y_adv[start_idx: end_idx] = output
correct_batch = y.eq(output)
robust_flags[start_idx:end_idx] = correct_batch.detach().to(robust_flags.device)
state.robust_flags = robust_flags
robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
robust_accuracy_dict = {'clean': robust_accuracy}
state.clean_accuracy = robust_accuracy
if self.verbose:
self.logger.log('initial accuracy: {:.2%}'.format(robust_accuracy))
else:
robust_flags = state.robust_flags.to(x_orig.device)
robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
robust_accuracy_dict = {'clean': state.clean_accuracy}
if self.verbose:
self.logger.log('initial clean accuracy: {:.2%}'.format(state.clean_accuracy))
self.logger.log('robust accuracy at the time of restoring the state: {:.2%}'.format(robust_accuracy))
x_adv = x_orig.clone().detach()
startt = time.time()
for attack in attacks_to_run:
# item() is super important as pytorch int division uses floor rounding
num_robust = torch.sum(robust_flags).item()
if num_robust == 0:
break
n_batches = int(np.ceil(num_robust / bs))
robust_lin_idcs = torch.nonzero(robust_flags, as_tuple=False)
if num_robust > 1:
robust_lin_idcs.squeeze_()
for batch_idx in range(n_batches):
start_idx = batch_idx * bs
end_idx = min((batch_idx + 1) * bs, num_robust)
batch_datapoint_idcs = robust_lin_idcs[start_idx:end_idx]
if len(batch_datapoint_idcs.shape) > 1:
batch_datapoint_idcs.squeeze_(-1)
x = x_orig[batch_datapoint_idcs, :].clone().to(self.device)
y = y_orig[batch_datapoint_idcs].clone().to(self.device)
# make sure that x is a 4d tensor even if there is only a single datapoint left
if len(x.shape) == 3:
x.unsqueeze_(dim=0)
# run attack
if attack == 'apgd-ce':
# apgd on cross-entropy loss
self.apgd.loss = 'ce'
self.apgd.seed = self.get_seed()
adv_curr = self.apgd.perturb(x, y) #cheap=True
elif attack == 'apgd-dlr':
# apgd on dlr loss
self.apgd.loss = 'dlr'
self.apgd.seed = self.get_seed()
adv_curr = self.apgd.perturb(x, y) #cheap=True
elif attack == 'fab':
# fab
self.fab.targeted = False
self.fab.seed = self.get_seed()
adv_curr = self.fab.perturb(x, y)
elif attack == 'square':
# square
self.square.seed = self.get_seed()
adv_curr = self.square.perturb(x, y)
elif attack == 'apgd-t':
# targeted apgd
self.apgd_targeted.seed = self.get_seed()
adv_curr = self.apgd_targeted.perturb(x, y) #cheap=True
elif attack == 'fab-t':
# fab targeted
self.fab.targeted = True
self.fab.n_restarts = 1
self.fab.seed = self.get_seed()
adv_curr = self.fab.perturb(x, y)
else:
raise ValueError('Attack not supported')
output = self.get_logits(adv_curr).max(dim=1)[1]
false_batch = ~y.eq(output).to(robust_flags.device)
non_robust_lin_idcs = batch_datapoint_idcs[false_batch]
robust_flags[non_robust_lin_idcs] = False
state.robust_flags = robust_flags
x_adv[non_robust_lin_idcs] = adv_curr[false_batch].detach().to(x_adv.device)
y_adv[non_robust_lin_idcs] = output[false_batch].detach().to(x_adv.device)
if self.verbose:
num_non_robust_batch = torch.sum(false_batch)
self.logger.log('{} - {}/{} - {} out of {} successfully perturbed'.format(
attack, batch_idx + 1, n_batches, num_non_robust_batch, x.shape[0]))
robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
robust_accuracy_dict[attack] = robust_accuracy
state.add_run_attack(attack)
if self.verbose:
self.logger.log('robust accuracy after {}: {:.2%} (total time {:.1f} s)'.format(
attack.upper(), robust_accuracy, time.time() - startt))
# check about square
checks.check_square_sr(robust_accuracy_dict, logger=self.logger)
state.to_disk(force=True)
# final check
if self.verbose:
if self.norm == 'Linf':
res = (x_adv - x_orig).abs().reshape(x_orig.shape[0], -1).max(1)[0]
elif self.norm == 'L2':
res = ((x_adv - x_orig) ** 2).reshape(x_orig.shape[0], -1).sum(-1).sqrt()
elif self.norm == 'L1':
res = (x_adv - x_orig).abs().reshape(x_orig.shape[0], -1).sum(dim=-1)
self.logger.log('max {} perturbation: {:.5f}, nan in tensor: {}, max: {:.5f}, min: {:.5f}'.format(
self.norm, res.max(), (x_adv != x_adv).sum(), x_adv.max(), x_adv.min()))
self.logger.log('robust accuracy: {:.2%}'.format(robust_accuracy))
if return_labels:
return x_adv, y_adv
else:
return x_adv
def clean_accuracy(self, x_orig, y_orig, bs=250):
n_batches = math.ceil(x_orig.shape[0] / bs)
acc = 0.
for counter in range(n_batches):
x = x_orig[counter * bs:min((counter + 1) * bs, x_orig.shape[0])].clone().to(self.device)
y = y_orig[counter * bs:min((counter + 1) * bs, x_orig.shape[0])].clone().to(self.device)
output = self.get_logits(x)
acc += (output.max(1)[1] == y).float().sum()
if self.verbose:
print('clean accuracy: {:.2%}'.format(acc / x_orig.shape[0]))
return acc.item() / x_orig.shape[0]
def run_standard_evaluation_individual(self, x_orig, y_orig, bs=250, return_labels=False):
if self.verbose:
print('using {} version including {}'.format(self.version,
', '.join(self.attacks_to_run)))
l_attacks = self.attacks_to_run
adv = {}
verbose_indiv = self.verbose
self.verbose = False
for c in l_attacks:
startt = time.time()
self.attacks_to_run = [c]
x_adv, y_adv = self.run_standard_evaluation(x_orig, y_orig, bs=bs, return_labels=True)
if return_labels:
adv[c] = (x_adv, y_adv)
else:
adv[c] = x_adv
if verbose_indiv:
acc_indiv = self.clean_accuracy(x_adv, y_orig, bs=bs)
space = '\t \t' if c == 'fab' else '\t'
self.logger.log('robust accuracy by {} {} {:.2%} \t (time attack: {:.1f} s)'.format(
c.upper(), space, acc_indiv, time.time() - startt))
return adv
def set_version(self, version='standard'):
if self.verbose:
print('setting parameters for {} version'.format(version))
if version == 'standard':
self.attacks_to_run = ['apgd-ce', 'apgd-t', 'fab-t', 'square']
if self.norm in ['Linf', 'L2']:
self.apgd.n_restarts = 1
self.apgd_targeted.n_target_classes = 9
elif self.norm in ['L1']:
self.apgd.use_largereps = True
self.apgd_targeted.use_largereps = True
self.apgd.n_restarts = 5
self.apgd_targeted.n_target_classes = 5
self.fab.n_restarts = 1
self.apgd_targeted.n_restarts = 1
self.fab.n_target_classes = 9
#self.apgd_targeted.n_target_classes = 9
self.square.n_queries = 5000
elif version == 'plus':
self.attacks_to_run = ['apgd-ce', 'apgd-dlr', 'fab', 'square', 'apgd-t', 'fab-t']
self.apgd.n_restarts = 5
self.fab.n_restarts = 5
self.apgd_targeted.n_restarts = 1
self.fab.n_target_classes = 9
self.apgd_targeted.n_target_classes = 9
self.square.n_queries = 5000
if not self.norm in ['Linf', 'L2']:
print('"{}" version is used with {} norm: please check'.format(
version, self.norm))
elif version == 'rand':
self.attacks_to_run = ['apgd-ce', 'apgd-dlr']
self.apgd.n_restarts = 1
self.apgd.eot_iter = 20
|