onebitquantized commited on
Commit
085fd2d
·
verified ·
1 Parent(s): e6566ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -195
README.md CHANGED
@@ -1,199 +1,82 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: llama3.1
4
+ base_model:
5
+ - meta-llama/Llama-3.1-70B-Instruct
6
  ---
7
 
8
+ # This model has been xMADified!
9
+
10
+ This repository contains [`meta-llama/Llama-3.1-70B-Instruct`](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
11
+
12
+ # Why should I use this model?
13
+
14
+ 1. **Accuracy:** This xMADified model is the **best** quantized version of the `meta-llama/Llama-3.1-70B-Instruct` model (40 GB only). See _Table 1_ below for model quality benchmarks.
15
+
16
+ 2. **Memory-efficiency:** The full-precision model is around 140 GB, while this xMADified model is only around 40 GB, making it feasible to run on one 48 GB GPU.
17
+
18
+ 3. **Fine-tuning**: These models are fine-tunable over the same reduced (48 GB GPUs) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
19
+
20
+
21
+ ## Table 1: xMAD vs. NeuralMagic
22
+
23
+ | Model | LAMBADA Standard | LAMBADA OpenAI | MMLU | PIQA | WinoGrande |
24
+ |---|---|---|---|---|---|
25
+ | [xmadai/Llama-3.1-70B-Instruct-xMADai-INT4](https://huggingface.co/xmadai/Llama-3.1-70B-Instruct-xMADai-INT4) (this model) | **72.70** | **76.07** | **81.75** | **83.41** | **78.53** |
26
+ | [neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16](https://huggingface.co/neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16) | 71.51 | 75.24 | 81.71 | 82.43 | 77.82 |
27
+
28
+
29
+ # How to Run Model
30
+
31
+ Loading the model checkpoint of this xMADified model requires around 40 GB of VRAM. Hence it can be efficiently run on a single 48 GB GPU.
32
+
33
+ **Package prerequisites**:
34
+
35
+ 1. Run the following *commands to install the required packages.
36
+ ```bash
37
+ pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
38
+ pip install transformers accelerate optimum
39
+ pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/AutoGPTQ.git@v0.7.1"
40
+ ```
41
+ **Sample Inference Code**
42
+ ```python
43
+ from transformers import AutoTokenizer
44
+ from auto_gptq import AutoGPTQForCausalLM
45
+ model_id = "xmadai/Llama-3.1-70B-Instruct-xMADai-INT4"
46
+ prompt = [
47
+ {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
48
+ {"role": "user", "content": "What's Deep Learning?"},
49
+ ]
50
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
51
+ inputs = tokenizer.apply_chat_template(
52
+ prompt,
53
+ tokenize=True,
54
+ add_generation_prompt=True,
55
+ return_tensors="pt",
56
+ return_dict=True,
57
+ ).to("cuda")
58
+ model = AutoGPTQForCausalLM.from_quantized(
59
+ model_id,
60
+ device_map='auto',
61
+ trust_remote_code=True,
62
+ )
63
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
64
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
65
+ ```
66
+
67
+ # Citation
68
+
69
+ If you found this model useful, please cite our research paper.
70
+
71
+ ```
72
+ @article{zhang2024leanquant,
73
+ title={LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid},
74
+ author={Zhang, Tianyi and Shrivastava, Anshumali},
75
+ journal={arXiv preprint arXiv:2407.10032},
76
+ year={2024},
77
+ url={https://arxiv.org/abs/2407.10032},
78
+ }
79
+ ```
80
+
81
+ # Contact Us
82
+ For additional xMADified models, access to fine-tuning, and general questions, please contact us at support@xmad.ai and join our waiting list.