File size: 6,842 Bytes
41f97d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import matplotlib.pyplot as plt
import numpy as np
import torch
import imageio
import io
def random_rotation_matrix():
# Random quaternion
q = torch.randn(4)
q = q / torch.norm(q)
# Quaternion to rotation matrix
R = torch.tensor([
[1 - 2*q[2]**2 - 2*q[3]**2, 2*q[1]*q[2] - 2*q[3]*q[0], 2*q[1]*q[3] + 2*q[2]*q[0]],
[2*q[1]*q[2] + 2*q[3]*q[0], 1 - 2*q[1]**2 - 2*q[3]**2, 2*q[2]*q[3] - 2*q[1]*q[0]],
[2*q[1]*q[3] - 2*q[2]*q[0], 2*q[2]*q[3] + 2*q[1]*q[0], 1 - 2*q[1]**2 - 2*q[2]**2]
])
return R
def augment_data(data):
B, T, M = data.shape
augmented_data = torch.zeros_like(data)
for i in range(B):
for c in range(0, M, 6):
R = random_rotation_matrix().cuda()
acc = data[i, :, c:c+3].transpose(0, 1) # Shape (3, T)
gyro = data[i, :, c+3:c+6].transpose(0, 1) # Shape (3, T)
# Apply rotation
rotated_acc = torch.matmul(R, acc)
rotated_gyro = torch.matmul(R, gyro)
# Concatenate and assign to augmented_data
augmented_data[i, :, c:c+3] = rotated_acc.transpose(0, 1)
augmented_data[i, :, c+3:c+6] = rotated_gyro.transpose(0, 1)
return augmented_data
def update_limits(data):
# Get global min and max for each axis
min_x, max_x = np.min(data[:, :, 0]), np.max(data[:, :, 0])
min_y, max_y = np.min(data[:, :, 2]), np.max(data[:, :, 2])
min_z, max_z = np.min(data[:, :, 1]), np.max(data[:, :, 1])
# Add some padding to ensure the skeleton doesn't touch the plot edges
padding = 0.1
x_range = max_x - min_x
y_range = max_y - min_y
z_range = max_z - min_z
return (min_x - padding * x_range, max_x + padding * x_range), \
(min_y - padding * y_range, max_y + padding * y_range), \
(min_z - padding * z_range, max_z + padding * z_range)
def plot_skeleton(frame_data, xlims, ylims, zlims, dataset):
"""
Plot a single frame of skeleton data.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(frame_data[:, 0], frame_data[:, 2], frame_data[:, 1])
# Add code here to connect the joints as per your skeleton structure
if dataset == 't2m':
connections = [
[0, 2, 5, 8, 11],
[0, 1, 4, 7, 10],
[0, 3, 6, 9, 12, 15],
[9, 14, 17, 19, 21],
[9, 13, 16, 18, 20]
]
if dataset == 'kit':
connections = [
[0, 11, 12, 13, 14, 15],
[0, 16, 17, 18, 19, 20],
[0, 1, 2, 3, 4],
[3, 5, 6, 7],
[3, 8, 9, 10]
]
if dataset == 'ntu':
connections = [
[0, 12, 13, 14, 15],
[0, 16, 17, 18, 19],
[0, 1, 20, 2, 3],
[20, 4, 5, 6, 7, 21],
[7, 22],
[20, 8, 9, 10, 11, 23],
[11, 24],
]
# Plot the lines for each sequence
for connection in connections:
for i in range(len(connection)-1):
start_joint = connection[i]
end_joint = connection[i+1]
ax.plot([frame_data[start_joint, 0], frame_data[end_joint, 0]],
[frame_data[start_joint, 2], frame_data[end_joint, 2]],
[frame_data[start_joint, 1], frame_data[end_joint, 1]])
ax.view_init(elev=10, azim=90)
ax.set_box_aspect((np.ptp(xlims), np.ptp(ylims), np.ptp(zlims)))
ax.set_xlim(xlims)
ax.set_ylim(ylims)
ax.set_zlim(zlims)
ax.set_xlabel('X')
ax.set_ylabel('Z')
ax.set_zlabel('Y')
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = imageio.imread(buf)
buf.close()
plt.close(fig) # Close the figure to prevent display
return img
def plot_skeleton_gif(data, dataset):
xlims, ylims, zlims = update_limits(data)
images = [plot_skeleton(frame, xlims, ylims, zlims, dataset) for frame in data]
imageio.mimsave('./skeleton_animation.gif', images, fps=20)
return
def plot_single_skeleton(data, dataset, frame=0):
xlims, ylims, zlims = update_limits(data)
frame_data = data[frame]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(frame_data[:, 0], frame_data[:, 2], frame_data[:, 1])
# Add code here to connect the joints as per your skeleton structure
if dataset == 't2m':
connections = [
[0, 2, 5, 8, 11],
[0, 1, 4, 7, 10],
[0, 3, 6, 9, 12, 15],
[9, 14, 17, 19, 21],
[9, 13, 16, 18, 20]
]
if dataset == 'kit':
connections = [
[0, 11, 12, 13, 14, 15],
[0, 16, 17, 18, 19, 20],
[0, 1, 2, 3, 4],
[3, 5, 6, 7],
[3, 8, 9, 10]
]
if dataset == 'ntu':
connections = [
[0, 12, 13, 14, 15],
[0, 16, 17, 18, 19],
[0, 1, 20, 2, 3],
[20, 4, 5, 6, 7, 21],
[7, 22],
[20, 8, 9, 10, 11, 23],
[11, 24],
]
# Plot the lines for each sequence
for connection in connections:
for i in range(len(connection)-1):
start_joint = connection[i]
end_joint = connection[i+1]
ax.plot([frame_data[start_joint, 0], frame_data[end_joint, 0]],
[frame_data[start_joint, 2], frame_data[end_joint, 2]],
[frame_data[start_joint, 1], frame_data[end_joint, 1]])
#ax.view_init(elev=10, azim=90)
ax.set_box_aspect((np.ptp(xlims), np.ptp(ylims), np.ptp(zlims)))
ax.set_xlim(xlims)
ax.set_ylim(ylims)
ax.set_zlim(zlims)
ax.set_xlabel('X')
ax.set_ylabel('Z')
ax.set_zlabel('Y')
plt.savefig('skeleton.pdf', bbox_inches='tight')
def compute_height(joints, head_index, l_foot_index, r_foot_index):
joints = torch.from_numpy(joints)
left = (joints[:,head_index,1] - joints[:,l_foot_index,1])[0]
right = (joints[:,head_index,1] - joints[:,r_foot_index,1])[0]
height = (left + right) / 2
return height
def compute_metrics_np(similarity_matrix, correct_labels):
B, _ = similarity_matrix.shape
ranked_indices = np.argsort(-similarity_matrix, axis=1)
correct_label_ranks = np.array([np.where(ranked_indices[i] == correct_labels[i])[0][0] for i in range(B)]) + 1
# Compute R@K
R_at_1 = np.mean(correct_label_ranks <= 1)
R_at_2 = np.mean(correct_label_ranks <= 2)
R_at_3 = np.mean(correct_label_ranks <= 3)
R_at_4 = np.mean(correct_label_ranks <= 4)
R_at_5 = np.mean(correct_label_ranks <= 5)
# Compute MRR
MRR = np.mean(1.0 / correct_label_ranks)
return R_at_1, R_at_2, R_at_3, R_at_4, R_at_5, MRR
|