File size: 10,065 Bytes
f3a08e4
 
2ceb93e
 
 
 
 
d9d45f8
f3a08e4
 
 
7ff3964
f3a08e4
 
 
 
 
ed19e55
 
 
 
 
 
 
 
 
 
 
 
 
f3a08e4
 
 
 
 
ed19e55
f3a08e4
 
 
7bd192a
 
60ccbb0
 
 
7bd192a
a68138f
7bd192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a08e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c378cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
license: apache-2.0
tags:
- Text-to-Image
- ControlNet
- Diffusers
- Stable Diffusion
pipeline_tag: text-to-image
---

# **ControlNet++: All-in-one ControlNet for image generations and editing!**
## **ProMax Model has released!! 12 control + 5 advanced editing, just try it!!!**
![images_display](./images/masonry.webp)

## Network Arichitecture
![images](./images/ControlNet++.png)

## Advantages about the model
- Use bucket training like novelai, can generate high resolutions images of any aspect ratio
- Use large amount of high quality data(over 10000000 images), the dataset covers a diversity of situation
- Use re-captioned prompt like DALLE.3, use CogVLM to generate detailed description, good prompt following ability
- Use many useful tricks during training. Including but not limited to date augmentation, mutiple loss, multi resolution
- Use almost the same parameter compared with original ControlNet. No obvious increase in network parameter or computation.
- Support 10+ control conditions, no obvious performance drop on any single condition compared with training independently
- Support multi condition generation, condition fusion is learned during training. No need to set hyperparameter or design prompts.
- Compatible with other opensource SDXL models, such as BluePencilXL, CounterfeitXL. Compatible with other Lora models.


***We design a new architecture that can support 10+ control types in condition text-to-image generation and can generate high resolution images visually comparable with 
midjourney***. The network is based on the original ControlNet architecture, we propose two new modules to: 1 Extend the original ControlNet to support different image 
conditions using the same network parameter. 2 Support multiple conditions input without increasing computation offload, which is especially important for designers 
who want to edit image in detail, different conditions use the same condition encoder, without adding extra computations or parameters. We do thoroughly experiments 
on SDXL and achieve superior performance both in control ability and aesthetic score. We release the method and the model to the open source community to make everyone 
can enjoy it.  

Inference scripts and more details can found: https://github.com/xinsir6/ControlNetPlus/tree/main

**If you find it useful, please give me a star, thank you very much**

**~500+ star, release the ProMax version with tile and inpainting!!!~**  
**SDXL ProMax version has been released!!!,Enjoy it!!!**  
**~1000+ star, release the ControlNet++ model for SD3!!!~**  
**~3000+ star, release the ControlNet++ ProMax model for SD3!!!~**  
**I am sorry that because of the project's revenue and expenditure are difficult to balance, the GPU resources are assigned to other projects that are more likely to be profitable, the SD3 trainging is stopped until I find enough GPU supprt, I will try my best to find GPUs to continue training. If this brings you inconvenience, I sincerely apologize for that. I want to thank everyone who likes this project, your support is what keeps me going**

Note: we put the promax model into the promax directory in the same [huggingface model repo](https://huggingface.co/xinsir/controlnet-union-sdxl-1.0), detailed instructions will be added later.
## Advanced editing features in Promax Model
### Tile Deblur
![blur0](./images/100000_tile_blur_concat.webp)
![blur1](./images/100001_tile_blur_concat.webp)
![blur2](./images/100002_tile_blur_concat.webp)
![blur3](./images/100003_tile_blur_concat.webp)
![blur4](./images/100004_tile_blur_concat.webp)
![blur5](./images/100005_tile_blur_concat.webp)
### Tile variation
![var0](./images/100006_tile_var_concat.webp)
![var1](./images/100007_tile_var_concat.webp)
![var2](./images/100008_tile_var_concat.webp)
![var3](./images/100009_tile_var_concat.webp)
![var4](./images/100010_tile_var_concat.webp)
![var5](./images/100011_tile_var_concat.webp)

### Tile Super Resolution
Following example show from 1M resolution --> 9M resolution
<div style="display: flex; justify-content: space-between;">
  <img src="./images/tile_super1.webp" alt="Image 1" style="width: 49%; margin: 1%;">
  <img src="./images/tile_super1_9upscale.webp" alt="Image 2" style="width: 49%; margin: 1%;">
</div>

<div style="display: flex; justify-content: space-between;">
  <img src="./images/tile_super2.webp" alt="Image 1" style="width: 49%; margin: 1%;">
  <img src="./images/tile_super2_9upscale.webp" alt="Image 2" style="width: 49%; margin: 1%;">
</div>

### Image Inpainting
![inp0](./images/100018_inpainting_concat.webp)
![inp1](./images/100019_inpainting_concat.webp)
![inp2](./images/100020_inpainting_concat.webp)
![inp3](./images/100021_inpainting_concat.webp)
![inp4](./images/100022_inpainting_concat.webp)
![inp5](./images/100023_inpainting_concat.webp)

### Image Outpainting
![oup0](./images/100012_outpainting_concat.webp)
![oup1](./images/100013_outpainting_concat.webp)
![oup2](./images/100014_outpainting_concat.webp)
![oup3](./images/100015_outpainting_concat.webp)
![oup4](./images/100016_outpainting_concat.webp)
![oup5](./images/100017_outpainting_concat.webp)


## Visual Examples
### Openpose
![pose0](./images/000000_pose_concat.webp)
![pose1](./images/000001_pose_concat.webp)
![pose2](./images/000002_pose_concat.webp)
![pose3](./images/000003_pose_concat.webp)
![pose4](./images/000004_pose_concat.webp)
### Depth
![depth0](./images/000005_depth_concat.webp)
![depth1](./images/000006_depth_concat.webp)
![depth2](./images/000007_depth_concat.webp)
![depth3](./images/000008_depth_concat.webp)
![depth4](./images/000009_depth_concat.webp)
### Canny
![canny0](./images/000010_canny_concat.webp)
![canny1](./images/000011_canny_concat.webp)
![canny2](./images/000012_canny_concat.webp)
![canny3](./images/000013_canny_concat.webp)
![canny4](./images/000014_canny_concat.webp)
### Lineart
![lineart0](./images/000015_lineart_concat.webp)
![lineart1](./images/000016_lineart_concat.webp)
![lineart2](./images/000017_lineart_concat.webp)
![lineart3](./images/000018_lineart_concat.webp)
![lineart4](./images/000019_lineart_concat.webp)
### AnimeLineart
![animelineart0](./images/000020_anime_lineart_concat.webp)
![animelineart1](./images/000021_anime_lineart_concat.webp)
![animelineart2](./images/000022_anime_lineart_concat.webp)
![animelineart3](./images/000023_anime_lineart_concat.webp)
![animelineart4](./images/000024_anime_lineart_concat.webp)
### Mlsd
![mlsd0](./images/000025_mlsd_concat.webp)
![mlsd1](./images/000026_mlsd_concat.webp)
![mlsd2](./images/000027_mlsd_concat.webp)
![mlsd3](./images/000028_mlsd_concat.webp)
![mlsd4](./images/000029_mlsd_concat.webp)
### Scribble
![scribble0](./images/000030_scribble_concat.webp)
![scribble1](./images/000031_scribble_concat.webp)
![scribble2](./images/000032_scribble_concat.webp)
![scribble3](./images/000033_scribble_concat.webp)
![scribble4](./images/000034_scribble_concat.webp)
### Hed
![hed0](./images/000035_hed_concat.webp)
![hed1](./images/000036_hed_concat.webp)
![hed2](./images/000037_hed_concat.webp)
![hed3](./images/000038_hed_concat.webp)
![hed4](./images/000039_hed_concat.webp)
### Pidi(Softedge)
![pidi0](./images/000040_softedge_concat.webp)
![pidi1](./images/000041_softedge_concat.webp)
![pidi2](./images/000042_softedge_concat.webp)
![pidi3](./images/000043_softedge_concat.webp)
![pidi4](./images/000044_softedge_concat.webp)
### Teed
![ted0](./images/000045_ted_concat.webp)
![ted1](./images/000046_ted_concat.webp)
![ted2](./images/000047_ted_concat.webp)
![ted3](./images/000048_ted_concat.webp)
![ted4](./images/000049_ted_concat.webp)
### Segment
![segment0](./images/000050_seg_concat.webp)
![segment1](./images/000051_seg_concat.webp)
![segment2](./images/000052_seg_concat.webp)
![segment3](./images/000053_seg_concat.webp)
![segment4](./images/000054_seg_concat.webp)
### Normal
![normal0](./images/000055_normal_concat.webp)
![normal1](./images/000056_normal_concat.webp)
![normal2](./images/000057_normal_concat.webp)
![normal3](./images/000058_normal_concat.webp)
![normal4](./images/000059_normal_concat.webp)

## Multi Control Visual Examples
### Openpose + Canny
![pose_canny0](./images/000007_openpose_canny_concat.webp)
![pose_canny1](./images/000008_openpose_canny_concat.webp)
![pose_canny2](./images/000009_openpose_canny_concat.webp)
![pose_canny3](./images/000010_openpose_canny_concat.webp)
![pose_canny4](./images/000011_openpose_canny_concat.webp)
![pose_canny5](./images/000012_openpose_canny_concat.webp)

### Openpose + Depth
![pose_depth0](./images/000013_openpose_depth_concat.webp)
![pose_depth1](./images/000014_openpose_depth_concat.webp)
![pose_depth2](./images/000015_openpose_depth_concat.webp)
![pose_depth3](./images/000016_openpose_depth_concat.webp)
![pose_depth4](./images/000017_openpose_depth_concat.webp)
![pose_depth5](./images/000018_openpose_depth_concat.webp)

### Openpose + Scribble
![pose_scribble0](./images/000001_openpose_scribble_concat.webp)
![pose_scribble1](./images/000002_openpose_scribble_concat.webp)
![pose_scribble2](./images/000003_openpose_scribble_concat.webp)
![pose_scribble3](./images/000004_openpose_scribble_concat.webp)
![pose_scribble4](./images/000005_openpose_scribble_concat.webp)
![pose_scribble5](./images/000006_openpose_scribble_concat.webp)

### Openpose + Normal
![pose_normal0](./images/000019_openpose_normal_concat.webp)
![pose_normal1](./images/000020_openpose_normal_concat.webp)
![pose_normal2](./images/000021_openpose_normal_concat.webp)
![pose_normal3](./images/000022_openpose_normal_concat.webp)
![pose_normal4](./images/000023_openpose_normal_concat.webp)
![pose_normal5](./images/000024_openpose_normal_concat.webp)

### Openpose + Segment
![pose_segment0](./images/000025_openpose_sam_concat.webp)
![pose_segment1](./images/000026_openpose_sam_concat.webp)
![pose_segment2](./images/000027_openpose_sam_concat.webp)
![pose_segment3](./images/000028_openpose_sam_concat.webp)
![pose_segment4](./images/000029_openpose_sam_concat.webp)
![pose_segment5](./images/000030_openpose_sam_concat.webp)