File size: 6,625 Bytes
3207ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: apache-2.0
tags:
- text_to_image
- diffusers
- controlnet
- controlnet-canny-sdxl-1.0
---

# Controlnet-Canny-Sdxl-1.0

<!-- Provide a quick summary of what the model is/does. -->

Hello, I am very happy to announce the controlnet-canny-sdxl-1.0 model, a very powerful controlnet that can help you draw pictures with thin lines. The model was trained 
with large amount of high quality data, with carefully filtered and captioned. Besides, useful tricks are applied during the training, including date augmentation, mutiple loss 
and multi resolution. With only 1 stage training, the performance outperforms the other opensource canny models(Detail Analysis will be provide). I release it and hope to advance
the application of stable diffusion models. Canny is one of the most important ControlNet series models and can be applied to many jobs associated with drawing and designing.

## Model Details


### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** xinsir
- **Model type:** ControlNet_SDXL
- **License:** apache-2.0
- **Finetuned from model [optional]:** stabilityai/stable-diffusion-xl-base-1.0 

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Paper [optional]:** https://arxiv.org/abs/2302.05543

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Examples

prompt: A closeup of two day of the dead models, looking to the side, large flowered headdress, full dia de Los muertoe make up, lush red lips, butterflies, 
flowers, pastel colors, looking to the side, jungle, birds, color harmony , extremely detailed, intricate, ornate, motion, stunning, beautiful, unique, soft lighting

![images_00)](./000031.webp)
![images_01)](./000031_scribble.webp)

prompt: ghost with a plague doctor mask in a venice carnaval hyper realistic
![images_10)](./000028.webp)
![images_11)](./000028_scribble.webp)

prompt: A picture surrounded by blue stars and gold stars, glowing, dark navy blue and gray tones, distributed in light silver and gold, playful, festive atmosphere, pure fabric, chalk, FHD 8K
![images_20)](./000016.webp)
![images_21)](./000016_scribble.webp)

prompt: Delicious vegetarian pizza with champignon mushrooms, tomatoes, mozzarella, peppers and black olives, isolated on white background , transparent isolated white background , top down view, studio photo, transparent png, Clean sharp focus. High  end retouching. Food magazine photography. Award winning photography. Advertising photography. Commercial photography
![images_30)](./000010.webp)
![images_31)](./000010_scribble.webp)

prompt: a blonde woman in a wedding dress in a maple forest in summer with a flower crown laurel. Watercolor painting in the style of John William Waterhouse. Romanticism. Ethereal light.
![images_40)](./000006.webp)
![images_41)](./000006_scribble.webp)

### Examples Anime(Note that you need to change the base model to CounterfeitXL, others remains the same)
![images_50)](./000081.webp)
![images_51)](./000081_scribble.webp)

![images_60)](./000083.webp)
![images_61)](./000083_scribble.webp)

![images_70)](./000093.webp)
![images_71)](./000093_scribble.webp)

![images_80)](./000097.webp)
![images_81)](./000097_scribble.webp)


## How to Get Started with the Model

Use the code below to get started with the model.

```python
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from PIL import Image
import torch
import numpy as np
import cv2

controlnet_conditioning_scale = 1.0  
prompt = "your prompt, the longer the better, you can describe it as detail as possible"
negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'



eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")


controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-canny-sdxl-1.0",
    torch_dtype=torch.float16
)

# when test with other base model, you need to change the vae also.
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    safety_checker=None,
    torch_dtype=torch.float16,
    scheduler=eulera_scheduler,
)

# need to resize the image resolution to 1024 * 1024 or same bucket resolution to get the best performance

controlnet_img = cv2.imread("your image path")
height, width, _  = controlnet_img.shape
ratio = np.sqrt(1024. * 1024. / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
controlnet_img = cv2.resize(controlnet_img, (new_width, new_height))

controlnet_img = cv2.Canny(controlnet_img, 100, 200)
controlnet_img = HWC3(controlnet_img)
controlnet_img = Image.fromarray(controlnet_img)

images = pipe(
    prompt,
    negative_prompt=negative_prompt,
    image=controlnet_img,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    width=new_width,
    height=new_height,
    num_inference_steps=30,
    ).images

images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger")
```



## Training Details

The model is trained using high quality data, only 1 stage training. The resolution setting is the same with sdxl-base, 1024*1024


### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

The data consists of many sources, including midjourney, laion 5B, danbooru, and so on. The data is carefully filtered and annotated. 


### Evaluation

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

In our evaluation, the model got better aesthetic score in real images compared with stabilityai/stable-diffusion-xl-base-1.0,  and comparable performance in cartoon sytle images.
The model is better in control ability when test with perception similarity due to more strong data augmentation and more training steps. 
Besides, the model has lower rate to generate abnormal images which tend to include some abnormal human structure.