File size: 8,703 Bytes
002bd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import json
import os
import datasets
import dotenv
from pycocotools.coco import COCO

logger = datasets.logging.get_logger(__name__)


_BASE_IMAGE_METADATA_FEATURES = {
    "image_id": datasets.Value("int32"),
    "width": datasets.Value("int32"),
    "height": datasets.Value("int32"),
    "file_name": datasets.Value("string"),
    "coco_url": datasets.Value("string"),
    "task_type": datasets.Value("string"),
}

_BASE_REGION_FEATURES = {
    # NOTE: one of them is 900100184613, which is out of the range of int32
    "region_id": datasets.Value("int64"),
    "image_id": datasets.Value("int32"),
    "phrases": [datasets.Value("string")],
    "x": datasets.Value("int32"),
    "y": datasets.Value("int32"),
    "width": datasets.Value("int32"),
    "height": datasets.Value("int32"),
}


_BASE_MASK_FEATURES = {
    "size": [datasets.Value("int32")],
    "counts": datasets.Value("string"),
}

_BASE_MASK_REGION_FEATURES = {
    "region_id": datasets.Value("int64"),
    "image_id": datasets.Value("int32"),
    "phrases": [datasets.Value("string")],
    "x": datasets.Value("int32"),
    "y": datasets.Value("int32"),
    "width": datasets.Value("int32"),
    "height": datasets.Value("int32"),
    "mask": _BASE_MASK_FEATURES,
    # "area": datasets.Value("int32"),
    # "phrase_conf": datasets.Value("float32"),
}


_ANNOTATION_FEATURES = {
    "region_descriptions": {"regions": [_BASE_REGION_FEATURES]},
    "mask_region_descriptions": {"regions": [_BASE_MASK_REGION_FEATURES]},
}


class Objects365BuilderConfig(datasets.BuilderConfig):
    def __init__(
        self,
        name,
        splits,
        with_image: bool = True,
        with_mask: bool = True,
        objects365_base_dir: str = None,
        objects365_base_annotations_dir: str = None,
        task_type: str = "recognition",
        **kwargs,
    ):
        super().__init__(name, **kwargs)
        self.splits = splits
        self.with_image = with_image
        self.with_mask = with_mask
        self.objects365_base_dir = objects365_base_dir
        self.objects365_base_annotations_dir = objects365_base_annotations_dir
        self.task_type = task_type

    @property
    def features(self):
        annoation_type = "mask_region_descriptions" if self.with_mask else "region_descriptions"
        logger.info(f"Using annotation type: {annoation_type} due to with_mask={self.with_mask}")
        return datasets.Features(
            {
                **({"image": datasets.Image()} if self.with_image else {}),
                **_BASE_IMAGE_METADATA_FEATURES,
                **_ANNOTATION_FEATURES[annoation_type],
            }
        )


# Name of the dataset usually match the script name with CamelCase instead of snake_case
class Objects365Dataset(datasets.GeneratorBasedBuilder):
    """An example dataset script to work with the local (downloaded) Objects365 dataset"""

    VERSION = datasets.Version("0.0.0")

    BUILDER_CONFIG_CLASS = Objects365BuilderConfig
    BUILDER_CONFIGS = [
        # NOTE: we do not need test as it lacks visual promptsc
        # Objects365BuilderConfig(name="2017", splits=["train", "valid", "test"]),
        Objects365BuilderConfig(name="v2", splits=["train", "valid"]),
    ]
    DEFAULT_CONFIG_NAME = "v2"
    config: Objects365BuilderConfig

    def _info(self):
        return datasets.DatasetInfo(features=self.config.features)

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        if self.config.with_mask is True:
            raise ValueError("This objects365 does not support `with_mask=True`.")

        # data_dir = self.config.data_dir
        objects365_base_dir = self.config.objects365_base_dir
        objects365_base_annotations_dir = self.config.objects365_base_annotations_dir
        if objects365_base_dir is None:
            raise ValueError(
                "This script is supposed to work with local (downloaded) objects356 dataset. The argument `objects365_base_dir` in `load_dataset()` is required."
            )
        if objects365_base_annotations_dir is None:
            raise ValueError(
                "This script is supposed to work with local (downloaded) objects356 dataset. The argument `objects365_base_annotations_dir` in `load_dataset()` is required."
            )

        # NOTE: the config is from https://?.blob.core.windows.net/?/amldata/objects365_v2/, which is provided by YT Lin.
        # Which is different from the original one.
        _DL_URLS = {
            "train": objects365_base_dir,
            "val": objects365_base_dir,
            "annotations_train": os.path.join(objects365_base_annotations_dir, "objects365v2_train_fixann.json"),
            "annotations_val": os.path.join(objects365_base_annotations_dir, "objects365v2_val.json"),
        }

        archive_path = _DL_URLS

        splits = []
        for split in self.config.splits:
            if split == "train":
                dataset = datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "json_path": archive_path["annotations_train"],
                        "image_dir": archive_path["train"],
                        "split": "train",
                    },
                )
            elif split in ["val", "valid", "validation", "dev"]:
                dataset = datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "json_path": archive_path["annotations_val"],
                        "image_dir": archive_path["val"],
                        "split": "val",
                    },
                )
            else:
                continue

            splits.append(dataset)

        return splits

    def _generate_examples(
        # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
        self,
        json_path,
        image_dir,
        split,
    ):
        """Yields examples as (key, example) tuples."""

        coco = COCO(json_path)
        img_ids = coco.getImgIds()
        for idx, img_id in enumerate(img_ids):
            img = coco.imgs[img_id]
            image_metadata = {
                "coco_url": img["url"],
                "file_name": img["file_name"],
                "height": img["height"],
                "width": img["width"],
                "image_id": img["id"],
            }
            # NOTE: the config is from https://?.blob.core.windows.net/?/amldata/objects365_v2/, which is provided by YT Lin.
            # Which is different from the original one.
            image_dict = {"image": os.path.join(image_dir, split, img["file_name"])} if self.config.with_image else {}

            if img_id not in coco.imgToAnns:
                continue

            annotation = []
            for ann in coco.imgToAnns[img_id]:
                x, y, width, height = ann["bbox"]
                x, y, width, height = int(x), int(y), int(width), int(height)
                annotation_dict = {
                    # NOTE: one of them is 900100184613, which is out of the range of int32
                    "region_id": ann["id"],
                    "image_id": ann["image_id"],
                    "x": x,
                    "y": y,
                    "width": width,
                    "height": height,
                }

                phrases = []
                category_id = ann["category_id"]
                category = coco.cats[category_id]
                phrases.append(category["name"])
                # TODO: add supercategory
                # phrases.append(category["supercategory"])
                annotation_dict["phrases"] = phrases

                if self.config.with_mask:
                    mask_dict = coco.annToRLE(ann)
                    mask_dict = {
                        "size": mask_dict["size"],
                        "counts": mask_dict["counts"].decode("utf-8"),  # NOTE: otherwise, it leads to core dump error.
                    }
                    annotation_dict["mask"] = mask_dict

                annotation.append(annotation_dict)
            annotation = {"regions": annotation}

            yield idx, {**image_dict, **image_metadata, **annotation, "task_type": self.config.task_type}