File size: 23,071 Bytes
002bd9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import logging
import os
import os.path as osp
import socket
import sys
from dataclasses import dataclass, field
from typing import Optional, List, Any, Tuple, Dict
import datasets
import torch # noqa
import transformers
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig, OmegaConf
from transformers import Seq2SeqTrainingArguments, TrainingArguments
logger = logging.getLogger(__name__)
@dataclass
class SCATrainingArguments(TrainingArguments):
report_to: Any = field(
default="none"
) # THIS MUST BE NONE. Use wandb args to control logging. Otherwise, the logs are not controllable.
remove_unused_columns: bool = field(default=False)
# the eval batch size must be 1, since we cannot batchify
# different number of masks per sample during eval
per_device_eval_batch_size: int = field(default=1)
# use manually constructed `labels`; without using `label` or `label_ids`
label_names: List[str] = field(default_factory=lambda: ["labels"])
# to freely generete captions without conditioning on the gt captions
predict_with_generate: bool = field(default=True)
# Set log_level to `info`. By default, it is `warning`.
# debug - 10; info - 20; warning - 30; error - 40; critical - 50;
# by default, it is `passive` which is 30.
log_level: str = field(default="info")
# NOTE(xiaoke): here list the custom arguments
num_masks_per_sample: Optional[int] = field(default=None)
# https://huggingface.co/docs/transformers/run_scripts#test-a-script
max_train_samples: Optional[int] = field(default=None)
max_eval_samples: Optional[int] = field(default=None)
max_predict_samples: Optional[int] = field(default=None)
# external log dir, used in amulet
output_log_dir: Optional[str] = field(default=None)
# inference and save the generated captions
do_inference: bool = field(default=False)
# Fist evalute before training, from Keras
evaluate_before_train: bool = field(default=False)
# Config the trainable parameters
trainable_params: Optional[List[str]] = field(default=None)
custom_param_lrs: Dict[str, float] = field(
default_factory=lambda: dict(),
metadata={
"help": "custom param lrs, prefix: lr, e.g., language_model, prefix: lr, e.g., +training.custom_param_lrs='{language_model:0.1}'"
},
)
# Evaluate with metric computation beyond only loss
compute_metrics: Optional[bool] = field(default=None)
# Apply large-scale jittering and random flip augmentations for training
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_transforms: Optional[Any] = field(default=None)
# Apply instrutions in the data collator.
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_collator: Optional[Any] = field(default=None)
# Save strategies
# NOTE: by default, we save two checkpoint, one for best, the other for last
# ref: https://github.com/huggingface/transformers/issues/19041#issuecomment-1248056494
load_best_model_at_end: bool = field(default=True)
# NOTE: you may also need to change: metric_for_best_model
save_total_limit: int = field(default=2)
save_save_strategy: str = field(default="steps")
evaluation_strategy: str = field(default="steps")
# NOTE: chunk inference to reduce memory usage
generate_chunk_size: Optional[int] = field(default=None)
# NOTE: Ablate prompt types on VG.
prompt_types_to_ablate_on_vg: Optional[str] = field(
default=None
) # e.g., "certer_point_in_box, random_point_in_box, random_point_in_mask"
_run_post_init: bool = field(default=False)
def __post_init__(self):
# Don't run post-init until ready to convert to TrainingArgs
# to avoid `_n_gpu` which is not exists in `Trainer` arguments
# and type check by OmegaConf
if self.report_to != "none":
raise ValueError(f"report_to must be None, got {self.report_to}")
if self.label_smoothing_factor != 0:
raise ValueError(
f"label_smoothing_factor must be 0 as the first output of the model is not language model logits, got {self.label_smoothing_factor}"
)
if self._run_post_init:
if self.per_device_eval_batch_size != 1:
raise ValueError(
"per_device_eval_batch_size must be 1, "
"since we cannot batchify different "
"number of masks per sample during eval."
)
super().__post_init__()
@dataclass
class _Seq2SeqTrainingArguments(Seq2SeqTrainingArguments):
# OmegaConf doesn't support Union, so we need to use Any
# version 4.32.0
debug: Any
fsdp: Any
# version 4.30.2
generation_config: Any
# version 4.36.2
neftune_noise_alpha: Any = None
sharded_ddp: Any = "" # Removed in 4.36.2
@dataclass
class SCASeq2SeqTrainingArguments(SCATrainingArguments, _Seq2SeqTrainingArguments):
pass
@dataclass
class ModelArguments:
model_max_length: int = field(default=20)
cache_dir: str = field(default=".model.cache")
@dataclass
class SAMCaptionerModelArguments(ModelArguments):
sam_model_name_or_path: str = field(default="facebook/sam-vit-huge")
captioner_model_name_or_path: str = field(default="Salesforce/blip-image-captioning-base")
dtype: str = field(default="float16")
use_vcot: bool = field(default=False)
@dataclass
class SCAModelBaseArguments(ModelArguments):
model_name_or_path: Optional[str] = field(default=None)
sam_model_name_or_path: str = field(default="facebook/sam-vit-huge")
lm_head_model_name_or_path: str = field(default="gpt2")
additional_num_hidden_layers: int = field(default=2)
@dataclass
class SCAModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
@dataclass
class SCADirectDecodingModelArguments(SCAModelBaseArguments):
pass
@dataclass
class SCAMultitaskModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
@dataclass
class ScaMultitaskV2ModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
num_caption_heads: int = field(default=1)
@dataclass
class SCAMultitaskSplitMixerModelArguments(SCAModelBaseArguments):
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
num_caption_heads: int = field(default=1)
@dataclass
class SCADirectDecodingV2ModelArguments(SCAModelBaseArguments):
num_task_tokens: int = field(default=6)
@dataclass
class SCAMultitaskROIPoolModelArguments(SCAModelBaseArguments):
num_task_tokens: int = field(default=6)
vl_projector_type: str = field(default="linear")
vl_projector_norm_type: str = field(default="none")
@dataclass
class ScaTimmMultitaskV2ModelArguments(SCAModelBaseArguments):
timm_vision_name: str = field(default="vit_base_patch16_clip_224.openai")
num_caption_tokens: int = field(default=1)
num_task_tokens: int = field(default=6)
num_caption_heads: int = field(default=1)
@dataclass
class DataArguments:
_target_: str = "datasets.load_dataset"
path: Optional[str] = field(default=None)
name: Optional[str] = field(default=None)
split: Optional[str] = field(default=None)
cache_dir: str = field(default=".data.cache")
streaming: bool = field(default=False)
@dataclass
class VGDenseCapDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome.py"))
name: str = "region_descriptions_v1.2.0"
base_image_url: Optional[str] = field(default=None)
base_annotation_url: Optional[str] = field(default=None)
sas_key: Optional[str] = field(default=None)
use_densecap_splits: bool = field(default=True)
with_image: bool = field(default=True)
def __post_init__(self):
if self.base_image_url is None:
raise ValueError(
"base_image_url must be specified in VGDenseCapDataArgument, since VisualGenome is not public available."
)
if self.base_annotation_url is None:
raise ValueError(
"base_annotation_url must be specified in VGDenseCapDataArgument, since VisualGenome is not public available."
)
if self.sas_key is None:
logger.warning("sas_key maybe be specified in VGDenseCapDataArgument, since we fetch data from Azure.")
@dataclass
class VGDenseCapLocalDataArgument(DataArguments):
path: str = field(
default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome-densecap-local.py")
)
name: str = "densecap"
with_image: bool = field(default=True)
base_dir: Optional[str] = field(default=None)
base_annotation_dir: Optional[str] = field(default=None)
@dataclass
class VGGRiTLocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome-grit-local.py"))
name: str = "grit"
with_image: bool = field(default=True)
base_dir: Optional[str] = field(default=None)
base_annotation_dir: Optional[str] = field(default=None)
@dataclass
class RefCOCODataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "refcoco.py"))
name: str = "refcoco-unc"
base_url: Optional[str] = field(default=None)
sas_key: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
@dataclass
class SA1BCapDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sa1b_cap.py"))
name: str = "mask_region_descriptions_v0.0.1"
sa1b_tar_url: Optional[str] = field(default=None)
sa1b_tar_template: Optional[str] = field(default=None)
sa1b_annot_tsv_url: Optional[str] = field(default=None)
sa1b_annot_template: Optional[str] = field(default=None)
sa1b_cap_tsv_url: Optional[str] = field(default=None)
sa1b_cap_template: Optional[str] = field(default=None)
sa1b_filter_tsv_url: Optional[str] = field(default=None)
sa1b_filter_template: Optional[str] = field(default=None)
sa1b_file_range: Optional[str] = field(
default=None,
metadata={
"help": "We use `ast.literal_eval` to parse the Python object. We assume it is a list of int or a `range` object."
},
)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
@dataclass
class COCOInstanceDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_instance.py"))
name: str = "2017"
coco_zip_url: Optional[str] = field(default=None)
coco_annotations_zip_url: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
task_type: str = field(default="recognition")
@dataclass
class COCOInstanceLocalDataArgument(COCOInstanceDataArgument):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_instance-local.py"))
@dataclass
class Objects365LocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "objects365-local.py"))
name: str = "v2"
objects365_base_dir: Optional[str] = field(default=None)
objects365_base_annotations_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
task_type: str = field(default="recognition")
@dataclass
class V3DetLocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "v3det-local.py"))
name: str = "v1"
v3det_base_dir: Optional[str] = field(default=None)
v3det_base_annotations_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(
default=False
) # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.
task_type: str = field(default="recognition")
@dataclass
class SBUPseudoRegionDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sbu-pseudo_region.py"))
name: str = "pseudo_region"
base_dir: Optional[str] = field(default=None)
base_annotations_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(default=False) # NOTE: we don't have mask for sbu
@dataclass
class SBUPseudoRegionLocalDataArgument(SBUPseudoRegionDataArgument):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sbu-pseudo_region-local.py"))
@dataclass
class COCOCaptionPseudoRegion(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_caption-pseudo_region.py"))
name: str = "2017"
coco_zip_url: Optional[str] = field(default=None)
coco_annotations_zip_url: Optional[str] = field(default=None)
with_image: bool = field(default=True)
with_mask: bool = field(default=False) # NOTE: we don't have mask for sbu
@dataclass
class WandbArguments:
log: bool = field(default=True)
project: Optional[str] = field(default="sca", metadata={"help": "wandb project"})
group: Optional[str] = field(default="debug", metadata={"help": "wandb group"})
name: Optional[str] = field(default="run", metadata={"help": "wandb run name"})
tags: Optional[List[str]] = field(default=None, metadata={"help": "wandb tags"})
resume: str = field(default="allow", metadata={"help": "wandb resume strategy"})
id: Optional[str] = field(default=None, metadata={"help": "wandb run id"})
@dataclass
class DataTransformsArguments:
"""
NOTE: used to control large-scale jittering data augmentation.
"""
min_scale: float = 0.1
max_scale: float = 2.0
image_size: int = 1024
@dataclass
class DataCollatorClass:
use_instruction: bool = field(default=False)
# NOTE: We have two kinds of tasks so far: `captioning` and `recognition`.
instruction_mapping_json: Optional[str] = field(default=None)
# NOTE: Useless, since all the node are initialized the same as `base_*`.
defaults = [{"wandb": "base_wandb"}]
@dataclass
class M3D2DLocalDataArgument(DataArguments):
path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "m3d_2d.py"))
name: str = "custom"
data_dir: Optional[str] = field(default=None)
with_image: bool = field(default=True)
task_type: str = field(default="recognition")
@dataclass
class Arguments:
defaults: List[Any] = field(default_factory=lambda: defaults)
training: SCASeq2SeqTrainingArguments = field(default_factory=lambda: SCASeq2SeqTrainingArguments(output_dir="?"))
# NOTE(xiaoke): to only maintain one sort of data config, we use soft links to link the data config to the train/eval config separately.
# NOTE(xiaoke): Should be Union[List[DataArguments], DataArguments], while OmegaConf doesn't support Union. So use str to compose the configs dynamically.
# NOTE(xiaoke): So we cannot override the args in the config file, since it will be converted to str.
train_data: List[str] = field(default_factory=list)
train_data_interleave_probabilities: Optional[List[float]] = field(default=None)
train_data_overrides: List[str] = field(
default_factory=list,
metadata={"help": "overrides for train data. \"train_data_overrides='[data.with_image\=False]'\""},
)
eval_data: List[str] = field(default_factory=list)
eval_data_overrides: List[str] = field(
default_factory=list,
metadata={"help": "overrides for eval data. \"eval_data_overrides='[data.with_image\=False]'\""},
)
model: ModelArguments = field(default_factory=ModelArguments)
wandb: WandbArguments = field(default_factory=WandbArguments)
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_transforms: Optional[DataTransformsArguments] = field(default=None)
# NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
# https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
data_collator: DataCollatorClass = field(default_factory=DataCollatorClass)
cs = ConfigStore.instance()
cs.store(name="base_config", node=Arguments)
cs.store(group="data", name="base_vg_densecap", node=VGDenseCapDataArgument)
cs.store(group="data", name="base_vg_densecap_local", node=VGDenseCapLocalDataArgument)
cs.store(group="data", name="base_vg_grit_local", node=VGGRiTLocalDataArgument)
cs.store(group="data", name="base_refcoco", node=RefCOCODataArgument)
cs.store(group="data", name="base_sa1b_cap", node=SA1BCapDataArgument)
cs.store(group="data", name="base_coco_instance", node=COCOInstanceDataArgument)
cs.store(group="data", name="base_coco_instance_local", node=COCOInstanceLocalDataArgument)
cs.store(group="data", name="base_objects365_local", node=Objects365LocalDataArgument)
cs.store(group="data", name="base_v3det_local", node=V3DetLocalDataArgument)
cs.store(group="data", name="base_sbu_pseudo_region", node=SBUPseudoRegionDataArgument)
cs.store(group="data", name="base_sbu_pseudo_region_local", node=SBUPseudoRegionLocalDataArgument)
cs.store(group="data", name="base_coco_caption_pseudo_region", node=COCOCaptionPseudoRegion)
cs.store(group="data", name="base_m3d_2d", node=M3D2DLocalDataArgument)
cs.store(group="model", name="base_sam_captioner", node=SAMCaptionerModelArguments)
cs.store(group="model", name="base_sca", node=SCAModelArguments)
cs.store(group="model", name="base_sca_direct_decoding", node=SCADirectDecodingModelArguments)
cs.store(group="model", name="base_sca_multitask", node=SCAMultitaskModelArguments)
cs.store(group="model", name="base_sca_multitask_v2", node=ScaMultitaskV2ModelArguments)
cs.store(group="model", name="base_sca_multitask_split_mixer", node=SCAMultitaskSplitMixerModelArguments)
cs.store(group="model", name="base_sca_direct_decoding_v2", node=SCADirectDecodingV2ModelArguments)
cs.store(group="model", name="base_sca_multitask_roi_pool", node=SCAMultitaskROIPoolModelArguments)
cs.store(group="model", name="base_sca_timm_multitask_v2", node=ScaTimmMultitaskV2ModelArguments)
cs.store(group="wandb", name="base_wandb", node=WandbArguments)
cs.store(group="data_transforms", name="base_data_transforms", node=DataTransformsArguments)
cs.store(group="data_collator", name="base_data_collator", node=DataCollatorClass)
def global_setup(
args: DictConfig,
) -> Tuple[Arguments, SCASeq2SeqTrainingArguments, ModelArguments]:
"""Global setup of arguments."""
if args.training.output_log_dir is not None:
output_log_dir = args.training.output_log_dir
if not osp.exists(output_log_dir):
os.makedirs(output_log_dir)
# NOTE: this is a dirty hack to enable logging to a different directory
# by default in Hydra, logging.root.handlers contains two handler: stream & file
# NOTE: mainly used in amulet
for handler in logging.root.handlers:
if isinstance(handler, logging.FileHandler):
file_path = handler.baseFilename
file_name = osp.basename(file_path)
external_file_path = osp.join(output_log_dir, file_name)
logging.root.addHandler(logging.FileHandler(external_file_path))
logger.info(f"Add external file handler to {external_file_path}")
break
hostname = socket.gethostname()
logger.info(f"Running on {hostname}")
# Convert args to the actual dataclass object, to enable methods. Need to
# delete _n_gpu, a property that TrainingArgs init doesn't expect.
del args.training._n_gpu
# Dirty hack: only run post init when we're ready to convert to TrainingArgs
args.training._run_post_init = True
# NOTE: otherwise, do_eval will be set to True in TrainingArguments.__post_init__
if args.training.do_eval == False and args.training.do_train == False:
args.training.evaluation_strategy = "no"
args.training.load_best_model_at_end = False
training_args = OmegaConf.to_object(args.training)
model_args = OmegaConf.to_object(args.model)
if (
isinstance(model_args, (SCAModelArguments, SCADirectDecodingModelArguments))
and args.model.model_name_or_path is None
):
# NOTE: we need to set the default value of `model_name_or_path` to None
# otherwise, it will be set to `base_sca` by default
raise ValueError(f"{type(model_args)} is not supported in model cfg name.")
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device},"
f" log_level: {log_level} n_gpu: {training_args.n_gpu}"
f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits"
f" training: {training_args.fp16}, bf16 training: {training_args.bf16}"
)
logger.debug(f"Training/evaluation parameters {training_args}")
return args, training_args, model_args
|