File size: 23,071 Bytes
002bd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import logging
import os
import os.path as osp
import socket
import sys
from dataclasses import dataclass, field
from typing import Optional, List, Any, Tuple, Dict

import datasets
import torch  # noqa
import transformers
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig, OmegaConf
from transformers import Seq2SeqTrainingArguments, TrainingArguments

logger = logging.getLogger(__name__)


@dataclass
class SCATrainingArguments(TrainingArguments):
    report_to: Any = field(
        default="none"
    )  # THIS MUST BE NONE. Use wandb args to control logging. Otherwise, the logs are not controllable.
    remove_unused_columns: bool = field(default=False)

    # the eval batch size must be 1, since we cannot batchify
    # different number of masks per sample during eval
    per_device_eval_batch_size: int = field(default=1)

    # use manually constructed `labels`; without using `label` or `label_ids`
    label_names: List[str] = field(default_factory=lambda: ["labels"])

    # to freely generete captions without conditioning on the gt captions
    predict_with_generate: bool = field(default=True)

    # Set log_level to `info`. By default, it is `warning`.
    # debug - 10; info - 20; warning - 30; error - 40; critical - 50;
    # by default, it is `passive` which is 30.
    log_level: str = field(default="info")

    # NOTE(xiaoke): here list the custom arguments
    num_masks_per_sample: Optional[int] = field(default=None)
    # https://huggingface.co/docs/transformers/run_scripts#test-a-script
    max_train_samples: Optional[int] = field(default=None)
    max_eval_samples: Optional[int] = field(default=None)
    max_predict_samples: Optional[int] = field(default=None)

    # external log dir, used in amulet
    output_log_dir: Optional[str] = field(default=None)

    # inference and save the generated captions
    do_inference: bool = field(default=False)

    # Fist evalute before training, from Keras
    evaluate_before_train: bool = field(default=False)

    # Config the trainable parameters
    trainable_params: Optional[List[str]] = field(default=None)
    custom_param_lrs: Dict[str, float] = field(
        default_factory=lambda: dict(),
        metadata={
            "help": "custom param lrs, prefix: lr, e.g., language_model, prefix: lr, e.g., +training.custom_param_lrs='{language_model:0.1}'"
        },
    )

    # Evaluate with metric computation beyond only loss
    compute_metrics: Optional[bool] = field(default=None)

    # Apply large-scale jittering and random flip augmentations for training
    # NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
    # https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
    data_transforms: Optional[Any] = field(default=None)

    # Apply instrutions in the data collator.
    # NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
    # https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
    data_collator: Optional[Any] = field(default=None)

    # Save strategies
    # NOTE: by default, we save two checkpoint, one for best, the other for last
    # ref: https://github.com/huggingface/transformers/issues/19041#issuecomment-1248056494
    load_best_model_at_end: bool = field(default=True)
    # NOTE: you may also need to change: metric_for_best_model
    save_total_limit: int = field(default=2)
    save_save_strategy: str = field(default="steps")
    evaluation_strategy: str = field(default="steps")

    # NOTE: chunk inference to reduce memory usage
    generate_chunk_size: Optional[int] = field(default=None)

    # NOTE: Ablate prompt types on VG.
    prompt_types_to_ablate_on_vg: Optional[str] = field(
        default=None
    )  # e.g., "certer_point_in_box, random_point_in_box, random_point_in_mask"

    _run_post_init: bool = field(default=False)

    def __post_init__(self):
        # Don't run post-init until ready to convert to TrainingArgs
        # to avoid `_n_gpu` which is not exists in `Trainer` arguments
        # and type check by OmegaConf
        if self.report_to != "none":
            raise ValueError(f"report_to must be None, got {self.report_to}")
        if self.label_smoothing_factor != 0:
            raise ValueError(
                f"label_smoothing_factor must be 0 as the first output of the model is not language model logits, got {self.label_smoothing_factor}"
            )
        if self._run_post_init:
            if self.per_device_eval_batch_size != 1:
                raise ValueError(
                    "per_device_eval_batch_size must be 1, "
                    "since we cannot batchify different "
                    "number of masks per sample during eval."
                )
            super().__post_init__()


@dataclass
class _Seq2SeqTrainingArguments(Seq2SeqTrainingArguments):
    # OmegaConf doesn't support Union, so we need to use Any
    # version 4.32.0
    debug: Any
    fsdp: Any
    # version 4.30.2
    generation_config: Any
    # version 4.36.2
    neftune_noise_alpha: Any = None
    sharded_ddp: Any = ""  # Removed in 4.36.2


@dataclass
class SCASeq2SeqTrainingArguments(SCATrainingArguments, _Seq2SeqTrainingArguments):
    pass


@dataclass
class ModelArguments:
    model_max_length: int = field(default=20)
    cache_dir: str = field(default=".model.cache")


@dataclass
class SAMCaptionerModelArguments(ModelArguments):
    sam_model_name_or_path: str = field(default="facebook/sam-vit-huge")
    captioner_model_name_or_path: str = field(default="Salesforce/blip-image-captioning-base")
    dtype: str = field(default="float16")
    use_vcot: bool = field(default=False)


@dataclass
class SCAModelBaseArguments(ModelArguments):
    model_name_or_path: Optional[str] = field(default=None)
    sam_model_name_or_path: str = field(default="facebook/sam-vit-huge")
    lm_head_model_name_or_path: str = field(default="gpt2")
    additional_num_hidden_layers: int = field(default=2)


@dataclass
class SCAModelArguments(SCAModelBaseArguments):
    num_caption_tokens: int = field(default=1)


@dataclass
class SCADirectDecodingModelArguments(SCAModelBaseArguments):
    pass


@dataclass
class SCAMultitaskModelArguments(SCAModelBaseArguments):
    num_caption_tokens: int = field(default=1)
    num_task_tokens: int = field(default=6)


@dataclass
class ScaMultitaskV2ModelArguments(SCAModelBaseArguments):
    num_caption_tokens: int = field(default=1)
    num_task_tokens: int = field(default=6)
    num_caption_heads: int = field(default=1)


@dataclass
class SCAMultitaskSplitMixerModelArguments(SCAModelBaseArguments):
    num_caption_tokens: int = field(default=1)
    num_task_tokens: int = field(default=6)
    num_caption_heads: int = field(default=1)


@dataclass
class SCADirectDecodingV2ModelArguments(SCAModelBaseArguments):
    num_task_tokens: int = field(default=6)


@dataclass
class SCAMultitaskROIPoolModelArguments(SCAModelBaseArguments):
    num_task_tokens: int = field(default=6)
    vl_projector_type: str = field(default="linear")
    vl_projector_norm_type: str = field(default="none")


@dataclass
class ScaTimmMultitaskV2ModelArguments(SCAModelBaseArguments):
    timm_vision_name: str = field(default="vit_base_patch16_clip_224.openai")
    num_caption_tokens: int = field(default=1)
    num_task_tokens: int = field(default=6)
    num_caption_heads: int = field(default=1)


@dataclass
class DataArguments:
    _target_: str = "datasets.load_dataset"
    path: Optional[str] = field(default=None)
    name: Optional[str] = field(default=None)
    split: Optional[str] = field(default=None)
    cache_dir: str = field(default=".data.cache")
    streaming: bool = field(default=False)


@dataclass
class VGDenseCapDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome.py"))
    name: str = "region_descriptions_v1.2.0"

    base_image_url: Optional[str] = field(default=None)
    base_annotation_url: Optional[str] = field(default=None)
    sas_key: Optional[str] = field(default=None)

    use_densecap_splits: bool = field(default=True)

    with_image: bool = field(default=True)

    def __post_init__(self):
        if self.base_image_url is None:
            raise ValueError(
                "base_image_url must be specified in VGDenseCapDataArgument, since VisualGenome is not public available."
            )
        if self.base_annotation_url is None:
            raise ValueError(
                "base_annotation_url must be specified in VGDenseCapDataArgument, since VisualGenome is not public available."
            )
        if self.sas_key is None:
            logger.warning("sas_key maybe be specified in VGDenseCapDataArgument, since we fetch data from Azure.")


@dataclass
class VGDenseCapLocalDataArgument(DataArguments):
    path: str = field(
        default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome-densecap-local.py")
    )
    name: str = "densecap"

    with_image: bool = field(default=True)

    base_dir: Optional[str] = field(default=None)
    base_annotation_dir: Optional[str] = field(default=None)


@dataclass
class VGGRiTLocalDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "visual_genome-grit-local.py"))
    name: str = "grit"

    with_image: bool = field(default=True)

    base_dir: Optional[str] = field(default=None)
    base_annotation_dir: Optional[str] = field(default=None)


@dataclass
class RefCOCODataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "refcoco.py"))
    name: str = "refcoco-unc"

    base_url: Optional[str] = field(default=None)
    sas_key: Optional[str] = field(default=None)

    with_image: bool = field(default=True)
    with_mask: bool = field(
        default=False
    )  # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.


@dataclass
class SA1BCapDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sa1b_cap.py"))
    name: str = "mask_region_descriptions_v0.0.1"

    sa1b_tar_url: Optional[str] = field(default=None)
    sa1b_tar_template: Optional[str] = field(default=None)

    sa1b_annot_tsv_url: Optional[str] = field(default=None)
    sa1b_annot_template: Optional[str] = field(default=None)

    sa1b_cap_tsv_url: Optional[str] = field(default=None)
    sa1b_cap_template: Optional[str] = field(default=None)

    sa1b_filter_tsv_url: Optional[str] = field(default=None)
    sa1b_filter_template: Optional[str] = field(default=None)

    sa1b_file_range: Optional[str] = field(
        default=None,
        metadata={
            "help": "We use `ast.literal_eval` to parse the Python object. We assume it is a list of int or a `range` object."
        },
    )

    with_image: bool = field(default=True)
    with_mask: bool = field(
        default=False
    )  # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.


@dataclass
class COCOInstanceDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_instance.py"))
    name: str = "2017"

    coco_zip_url: Optional[str] = field(default=None)
    coco_annotations_zip_url: Optional[str] = field(default=None)

    with_image: bool = field(default=True)
    with_mask: bool = field(
        default=False
    )  # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.

    task_type: str = field(default="recognition")


@dataclass
class COCOInstanceLocalDataArgument(COCOInstanceDataArgument):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_instance-local.py"))


@dataclass
class Objects365LocalDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "objects365-local.py"))
    name: str = "v2"

    objects365_base_dir: Optional[str] = field(default=None)
    objects365_base_annotations_dir: Optional[str] = field(default=None)

    with_image: bool = field(default=True)
    with_mask: bool = field(
        default=False
    )  # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.

    task_type: str = field(default="recognition")


@dataclass
class V3DetLocalDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "v3det-local.py"))
    name: str = "v1"

    v3det_base_dir: Optional[str] = field(default=None)
    v3det_base_annotations_dir: Optional[str] = field(default=None)

    with_image: bool = field(default=True)
    with_mask: bool = field(
        default=False
    )  # To align with default vg-densecap-region_descriptions, which has no mask. Therefore we can concatenate them smoothly.

    task_type: str = field(default="recognition")


@dataclass
class SBUPseudoRegionDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sbu-pseudo_region.py"))
    name: str = "pseudo_region"

    base_dir: Optional[str] = field(default=None)
    base_annotations_dir: Optional[str] = field(default=None)

    with_image: bool = field(default=True)
    with_mask: bool = field(default=False)  # NOTE: we don't have mask for sbu


@dataclass
class SBUPseudoRegionLocalDataArgument(SBUPseudoRegionDataArgument):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "sbu-pseudo_region-local.py"))


@dataclass
class COCOCaptionPseudoRegion(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "coco_caption-pseudo_region.py"))
    name: str = "2017"

    coco_zip_url: Optional[str] = field(default=None)
    coco_annotations_zip_url: Optional[str] = field(default=None)

    with_image: bool = field(default=True)
    with_mask: bool = field(default=False)  # NOTE: we don't have mask for sbu


@dataclass
class WandbArguments:
    log: bool = field(default=True)
    project: Optional[str] = field(default="sca", metadata={"help": "wandb project"})
    group: Optional[str] = field(default="debug", metadata={"help": "wandb group"})
    name: Optional[str] = field(default="run", metadata={"help": "wandb run name"})
    tags: Optional[List[str]] = field(default=None, metadata={"help": "wandb tags"})
    resume: str = field(default="allow", metadata={"help": "wandb resume strategy"})
    id: Optional[str] = field(default=None, metadata={"help": "wandb run id"})


@dataclass
class DataTransformsArguments:
    """
    NOTE: used to control large-scale jittering data augmentation.
    """

    min_scale: float = 0.1
    max_scale: float = 2.0
    image_size: int = 1024


@dataclass
class DataCollatorClass:
    use_instruction: bool = field(default=False)
    # NOTE: We have two kinds of tasks so far: `captioning` and `recognition`.
    instruction_mapping_json: Optional[str] = field(default=None)


# NOTE: Useless, since all the node are initialized the same as `base_*`.
defaults = [{"wandb": "base_wandb"}]

@dataclass
class M3D2DLocalDataArgument(DataArguments):
    path: str = field(default=osp.join(osp.dirname(__file__), "data", "data_scripts", "m3d_2d.py"))
    name: str = "custom"
    data_dir: Optional[str] = field(default=None)   

    with_image: bool = field(default=True)

    task_type: str = field(default="recognition")

@dataclass
class Arguments:
    defaults: List[Any] = field(default_factory=lambda: defaults)

    training: SCASeq2SeqTrainingArguments = field(default_factory=lambda: SCASeq2SeqTrainingArguments(output_dir="?"))

    # NOTE(xiaoke): to only maintain one sort of data config, we use soft links to link the data config to the train/eval config separately.
    # NOTE(xiaoke): Should be Union[List[DataArguments], DataArguments], while OmegaConf doesn't support Union. So use str to compose the configs dynamically.
    # NOTE(xiaoke): So we cannot override the args in the config file, since it will be converted to str.
    train_data: List[str] = field(default_factory=list)
    train_data_interleave_probabilities: Optional[List[float]] = field(default=None)
    train_data_overrides: List[str] = field(
        default_factory=list,
        metadata={"help": "overrides for train data. \"train_data_overrides='[data.with_image\=False]'\""},
    )

    eval_data: List[str] = field(default_factory=list)
    eval_data_overrides: List[str] = field(
        default_factory=list,
        metadata={"help": "overrides for eval data. \"eval_data_overrides='[data.with_image\=False]'\""},
    )

    model: ModelArguments = field(default_factory=ModelArguments)
    wandb: WandbArguments = field(default_factory=WandbArguments)

    # NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
    # https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
    data_transforms: Optional[DataTransformsArguments] = field(default=None)

    # NOTE: To support multiple level of config override. Check `src/conf/conf.yaml` and `src/arguments.py:SCASeq2SeqTrainingArguments`
    # https://github.com/facebookresearch/tava/blob/a9576801e81aebcf242588be39315e27f915894e/configs/nerf_dyn.yaml#L61C10-L61C10c
    data_collator: DataCollatorClass = field(default_factory=DataCollatorClass)


cs = ConfigStore.instance()
cs.store(name="base_config", node=Arguments)

cs.store(group="data", name="base_vg_densecap", node=VGDenseCapDataArgument)
cs.store(group="data", name="base_vg_densecap_local", node=VGDenseCapLocalDataArgument)
cs.store(group="data", name="base_vg_grit_local", node=VGGRiTLocalDataArgument)
cs.store(group="data", name="base_refcoco", node=RefCOCODataArgument)
cs.store(group="data", name="base_sa1b_cap", node=SA1BCapDataArgument)
cs.store(group="data", name="base_coco_instance", node=COCOInstanceDataArgument)
cs.store(group="data", name="base_coco_instance_local", node=COCOInstanceLocalDataArgument)
cs.store(group="data", name="base_objects365_local", node=Objects365LocalDataArgument)
cs.store(group="data", name="base_v3det_local", node=V3DetLocalDataArgument)
cs.store(group="data", name="base_sbu_pseudo_region", node=SBUPseudoRegionDataArgument)
cs.store(group="data", name="base_sbu_pseudo_region_local", node=SBUPseudoRegionLocalDataArgument)
cs.store(group="data", name="base_coco_caption_pseudo_region", node=COCOCaptionPseudoRegion)
cs.store(group="data", name="base_m3d_2d", node=M3D2DLocalDataArgument)


cs.store(group="model", name="base_sam_captioner", node=SAMCaptionerModelArguments)
cs.store(group="model", name="base_sca", node=SCAModelArguments)
cs.store(group="model", name="base_sca_direct_decoding", node=SCADirectDecodingModelArguments)
cs.store(group="model", name="base_sca_multitask", node=SCAMultitaskModelArguments)
cs.store(group="model", name="base_sca_multitask_v2", node=ScaMultitaskV2ModelArguments)
cs.store(group="model", name="base_sca_multitask_split_mixer", node=SCAMultitaskSplitMixerModelArguments)
cs.store(group="model", name="base_sca_direct_decoding_v2", node=SCADirectDecodingV2ModelArguments)
cs.store(group="model", name="base_sca_multitask_roi_pool", node=SCAMultitaskROIPoolModelArguments)
cs.store(group="model", name="base_sca_timm_multitask_v2", node=ScaTimmMultitaskV2ModelArguments)


cs.store(group="wandb", name="base_wandb", node=WandbArguments)

cs.store(group="data_transforms", name="base_data_transforms", node=DataTransformsArguments)

cs.store(group="data_collator", name="base_data_collator", node=DataCollatorClass)


def global_setup(
    args: DictConfig,
) -> Tuple[Arguments, SCASeq2SeqTrainingArguments, ModelArguments]:
    """Global setup of arguments."""
    if args.training.output_log_dir is not None:
        output_log_dir = args.training.output_log_dir
        if not osp.exists(output_log_dir):
            os.makedirs(output_log_dir)
        # NOTE: this is a dirty hack to enable logging to a different directory
        # by default in Hydra, logging.root.handlers contains two handler: stream & file
        # NOTE: mainly used in amulet
        for handler in logging.root.handlers:
            if isinstance(handler, logging.FileHandler):
                file_path = handler.baseFilename
                file_name = osp.basename(file_path)
                external_file_path = osp.join(output_log_dir, file_name)
                logging.root.addHandler(logging.FileHandler(external_file_path))
                logger.info(f"Add external file handler to {external_file_path}")
                break

    hostname = socket.gethostname()
    logger.info(f"Running on {hostname}")

    # Convert args to the actual dataclass object, to enable methods.  Need to
    # delete _n_gpu, a property that TrainingArgs init doesn't expect.
    del args.training._n_gpu
    # Dirty hack: only run post init when we're ready to convert to TrainingArgs
    args.training._run_post_init = True
    # NOTE: otherwise, do_eval will be set to True in TrainingArguments.__post_init__
    if args.training.do_eval == False and args.training.do_train == False:
        args.training.evaluation_strategy = "no"
        args.training.load_best_model_at_end = False

    training_args = OmegaConf.to_object(args.training)
    model_args = OmegaConf.to_object(args.model)

    if (
        isinstance(model_args, (SCAModelArguments, SCADirectDecodingModelArguments))
        and args.model.model_name_or_path is None
    ):
        # NOTE: we need to set the default value of `model_name_or_path` to None
        # otherwise, it will be set to `base_sca` by default
        raise ValueError(f"{type(model_args)} is not supported in model cfg name.")

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device},"
        f" log_level: {log_level} n_gpu: {training_args.n_gpu}"
        f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits"
        f" training: {training_args.fp16}, bf16 training: {training_args.bf16}"
    )
    logger.debug(f"Training/evaluation parameters {training_args}")

    return args, training_args, model_args