File size: 33,408 Bytes
002bd9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"HAS_CD_TO_ROOT = False"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"\n",
"if HAS_CD_TO_ROOT is False:\n",
" os.chdir(\"../../\")\n",
" HAS_CD_TO_ROOT = True\n",
"\n",
"import logging\n",
"import os\n",
"from typing import Optional, Dict\n",
"\n",
"import hydra\n",
"import torch\n",
"from hydra.utils import instantiate\n",
"from datasets import DatasetDict, load_dataset, IterableDatasetDict\n",
"from omegaconf import DictConfig, OmegaConf\n",
"from src.data.transforms import SamCaptionerDataTransform\n",
"from src.data.collator import SamCaptionerDataCollator\n",
"from src.arguments import Arguments, global_setup, SAMCaptionerModelArguments, SCAModelArguments, SCAModelBaseArguments\n",
"from src.models.sam_captioner import SAMCaptionerConfig, SAMCaptionerModel, SAMCaptionerProcessor\n",
"from src.models.sca import ScaProcessor\n",
"\n",
"from transformers.trainer_utils import get_last_checkpoint\n",
"from transformers import set_seed, Trainer\n",
"import gradio as gr\n",
"from dataclasses import dataclass\n",
"import numpy as np\n",
"from functools import partial\n",
"import pandas as pd\n",
"from src.train import prepare_datasets, prepare_data_transform, prepare_processor\n",
"import pycocotools.mask\n",
"from PIL import Image\n",
"\n",
"from hydra import initialize, compose\n",
"import json\n",
"import tqdm\n",
"import hashlib\n",
"import glob\n",
"import cv2 \n",
"import numpy as np \n",
"from PIL import Image, ImageDraw, ImageFont \n",
"import random\n",
"import pycocotools.mask\n",
"import sqlite3\n",
"from contextlib import closing\n",
"import dotenv\n",
"\n",
"os.getcwd()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DATASET='vg-densecap-local'\n",
"with initialize(version_base=\"1.3\", config_path=\"../../src/conf\"):\n",
" args = compose(\n",
" config_name=\"conf\",\n",
" overrides=[\n",
" f\"train_data=[{DATASET}]\",\n",
" f\"eval_data=[{DATASET}]\",\n",
" \"+model=base_sam_captioner\",\n",
" \"training.output_dir=tmp/visualization\"\n",
" # \"training.do_train=True\",\n",
" # \"training.do_eval=True\",\n",
" ],\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"args, training_args, model_args = global_setup(args)\n",
"os.makedirs(training_args.output_dir, exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize our dataset and prepare it\n",
"with initialize(version_base=\"1.3\", config_path=\"../../src/conf\"):\n",
" train_dataset, eval_dataset = prepare_datasets(args)\n",
"\n",
"# NOTE(xiaoke): load sas_key from .env for huggingface model downloading.\n",
"dotenv.load_dotenv('.env')\n",
"use_auth_token = os.getenv(\"USE_AUTH_TOKEN\", False)\n",
"\n",
"processor = prepare_processor(model_args, use_auth_token)\n",
"\n",
"train_dataset, eval_dataset = prepare_data_transform(\n",
" training_args, model_args, train_dataset, eval_dataset, processor\n",
")\n",
"\n",
"\n",
"# [NOTE] Used to restore the image tensor after transformed\n",
"# Use global to avoid passing too many arguments\n",
"global image_mean, image_std\n",
"image_mean, image_std = (\n",
" processor.sam_processor.image_processor.image_mean,\n",
" processor.sam_processor.image_processor.image_std,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"REWRITE_MAPPING = False\n",
"image_id_to_dataset_id_mapping_file = os.path.join(training_args.output_dir, \"image_id_to_dataset_id_mapping.json\")\n",
"\n",
"def find_json_file_with_md5(json_file):\n",
" json_file_name, json_file_ext = os.path.splitext(json_file)\n",
" json_file_blob = f\"{json_file_name}-*{json_file_ext}\"\n",
" return glob.glob(json_file_blob)\n",
"\n",
"def get_md5_from_json(json_file):\n",
" with open(json_file, \"r\") as f:\n",
" content = f.read()\n",
" return hashlib.md5(content.encode()).hexdigest()\n",
"\n",
"def get_md5_from_pyobj(pyobj):\n",
" bytes_data = pyobj.encode()\n",
" readable_hash = hashlib.md5(bytes_data).hexdigest() \n",
" return readable_hash\n",
"\n",
"def save_dict_to_json_with_md5(json_file, dict_data):\n",
" # Convert to json and bytes \n",
" json_data = json.dumps(dict_data) \n",
" json_data_md5 = get_md5_from_pyobj(json_data)\n",
" json_file_name, json_file_ext = os.path.splitext(json_file)\n",
" json_file_with_md5 = f\"{json_file_name}-{json_data_md5}{json_file_ext}\"\n",
" with open(json_file_with_md5, 'w') as f: \n",
" f.write(json_data) \n",
" return json_file_with_md5\n",
"\n",
"# Initialize our dataset and prepare it\n",
"with initialize(version_base=\"1.3\", config_path=\"../../src/conf\"):\n",
" args_no_image = compose(\n",
" config_name=\"conf\",\n",
" overrides=[\n",
" f\"train_data=[{DATASET}]\",\n",
" f\"eval_data=[{DATASET}]\",\n",
" \"+model=base_sam_captioner\",\n",
" \"training.output_dir=tmp/visualization\"\n",
" # \"training.do_train=True\",\n",
" # \"training.do_eval=True\",\n",
" ],\n",
" )\n",
" args_no_image.train_data_overrides = ['data.with_image=False']\n",
" args_no_image.eval_data_overrides = ['data.with_image=False']\n",
" train_dataset_no_image, eval_dataset_no_image = prepare_datasets(args_no_image)\n",
"\n",
"json_file_with_md5_ls = find_json_file_with_md5(image_id_to_dataset_id_mapping_file)\n",
"if len(json_file_with_md5_ls) > 1:\n",
" raise ValueError(f\"find more than one json file with md5, {json_file_with_md5_ls}\")\n",
"if REWRITE_MAPPING is False and len(json_file_with_md5_ls) == 1:\n",
" image_id_to_dataset_id_mapping_file = json_file_with_md5_ls[0]\n",
" md5_in_name = os.path.splitext(image_id_to_dataset_id_mapping_file)[0].split(\"-\")[-1]\n",
" assert md5_in_name == get_md5_from_json(image_id_to_dataset_id_mapping_file), f\"md5 not match for {image_id_to_dataset_id_mapping_file}\"\n",
"\n",
" with open(image_id_to_dataset_id_mapping_file, \"r\") as f:\n",
" image_id_to_dataset_id_mapping = json.load(f)\n",
" print(f\"Load mapping from {image_id_to_dataset_id_mapping_file}\")\n",
"else:\n",
" image_id_to_dataset_id_mapping = {\n",
" \"train\": dict(),\n",
" **{k: dict() for k in eval_dataset_no_image.keys()},\n",
" }\n",
" for sample_cnt, sample in enumerate(tqdm.tqdm(train_dataset_no_image)):\n",
" image_id_to_dataset_id_mapping[\"train\"][sample[\"image_id\"]] = sample_cnt\n",
" for eval_dataset_name, eval_dataset_ in eval_dataset_no_image.items():\n",
" for sample_cnt, sample in enumerate(tqdm.tqdm(eval_dataset_)):\n",
" image_id_to_dataset_id_mapping[eval_dataset_name][sample[\"image_id\"]] = sample_cnt\n",
" image_id_to_dataset_id_mapping_file = save_dict_to_json_with_md5(image_id_to_dataset_id_mapping_file, image_id_to_dataset_id_mapping)\n",
" print(f\"save mapping to {image_id_to_dataset_id_mapping_file}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load the infer json\n",
"infer_json_path_dict = {\n",
" \"vg-gpt2l-bs_32-lsj\": \"/home/t-yutonglin/xiaoke/segment-caption-anything-v2/amlt/111423.exp-only_vg-finetune_vg/111323.infer-train-sca-ablat-lsj-scale_lr-110423.4x8_fin-16x4_unfin.pre/best-gpt2-large-lsj-1xlr.110423.octo-4x8-v100-16g-no_pre/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json\",\n",
" \"vg-ollm3bv2-bs_32-lsj\": \"amlt/110723.exp.ablat-lsj-scale_lr-running-2/infer-train-sca-ablat-lsj-scale_lr-110423-110723.running-2/best-fp16-ollm3bv2-large-lsj-1xlr.110423.octo-4x8-v100-16g-no_pre/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json\",\n",
" \"o365_vg-gpt2l-bs_64-lsj\": \"amlt/111423.exp-only_vg-finetune_vg/111323.infer-train-sca.finetune_lsj_scale_lr-o365_1e_4_1xlr_lsj.111023.4x8_fin-16x4_unfin.pre/best-111223.rr1-4x8-v100-32g-pre.fintune-gpt2_large-lr_1e_4-1xlr-lsj-bs_2-o365_1e_4_no_lsj_bs_64/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json\",\n",
"}\n",
"\n",
"for job_name, json_path in infer_json_path_dict.items():\n",
" print(f\"job_name: {job_name}\")\n",
" print(f\"is exists: {os.path.exists(json_path)}\")\n",
" assert os.path.exists(json_path), f\"{json_path} not exists\"\n",
"\n",
"infer_json_path = infer_json_path_dict[\"vg-gpt2l-bs_32-lsj\"]\n",
"with open(infer_json_path, \"r\") as f:\n",
" infer_json = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import colorsys \n",
"colors = [ \n",
" (235, 206, 135), # Soft Yellow \n",
" (176, 224, 230), # Powder Blue \n",
" (240, 230, 140), # Khaki \n",
" (244, 164, 96), # Sandy Brown \n",
" (144, 238, 144), # Light Green \n",
" (221, 160, 221), # Plum \n",
" (255, 182, 193), # Light Pink \n",
" (173, 216, 230), # Light Blue \n",
" (255, 235, 205), # Blanched Almond \n",
" (245, 255, 250), # Mint Cream \n",
"] \n",
" \n",
"# Convert RGB to HSV and keep track of original index \n",
"colors_hsv = [(colorsys.rgb_to_hsv(color[0]/255, color[1]/255, color[2]/255), index) for index, color in enumerate(colors)] \n",
" \n",
"# Sort by hue \n",
"colors_hsv.sort() \n",
" \n",
"# Convert back to RGB \n",
"harmonious_colors = [colors[index] for hsv, index in colors_hsv] \n",
"\n",
"# Your selected colors \n",
"selected_colors = harmonious_colors\n",
"# Calculate height of each color strip \n",
"height = 256 // len(selected_colors) \n",
" \n",
"# Create a new image with RGB mode \n",
"img = Image.new('RGB', (256, 256)) \n",
" \n",
"draw = ImageDraw.Draw(img) \n",
" \n",
"for i, color in enumerate(selected_colors): \n",
" # Calculate the start and end positions of the color strip \n",
" start_pos = i * height \n",
" end_pos = start_pos + height \n",
" \n",
" # Draw the color strip \n",
" draw.rectangle([(0, start_pos), (256, end_pos)], fill=color) \n",
"img"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def hex_to_rgb(hex_color): \n",
" return tuple([int(hex_color[i:i+2], 16) for i in (1, 3, 5)])\n",
" \n",
"hex_colors = [\"#B0F2BCFF\", \"#89E8ACFF\", \"#67DBA5FF\", \"#4CC8A3FF\", \"#38B2A3FF\", \"#2C98A0FF\", \"#257D98FF\"] \n",
" \n",
"rgb_colors = [hex_to_rgb(color[:-2]) for color in hex_colors] # '[:-2]' is to remove the 'FF' at the end of each color code, which represents the alpha channel in ARGB format \n",
"harmonious_colors = rgb_colors\n",
" \n",
"# Create a new image with RGB mode \n",
"img = Image.new('RGB', (256, 256)) \n",
" \n",
"draw = ImageDraw.Draw(img) \n",
"\n",
"print(rgb_colors) \n",
"for i, color in enumerate(rgb_colors): \n",
" # Calculate the start and end positions of the color strip \n",
" start_pos = i * height \n",
" end_pos = start_pos + height \n",
" \n",
" # Draw the color strip \n",
" print(color)\n",
" draw.rectangle([(0, start_pos), (256, end_pos)], fill=color) \n",
"img"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"EVAL_DATASET_SPLIT = 'visual_genome-densecap-local-densecap-test'\n",
"first_sample = infer_json[3]\n",
"references = first_sample[\"references\"]\n",
"candidates = first_sample[\"candidates\"]\n",
"\n",
"image_id = first_sample[\"metadata\"][\"metadata_image_id\"]\n",
"region_id = first_sample[\"metadata\"][\"metadata_region_id\"]\n",
"input_boxes = first_sample[\"metadata\"][\"metadata_input_boxes\"]\n",
"\n",
"sample_cnt = image_id_to_dataset_id_mapping[EVAL_DATASET_SPLIT][str(image_id)]\n",
"sample = eval_dataset[EVAL_DATASET_SPLIT][sample_cnt]\n",
"image = sample[\"image\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from PIL import Image, ImageDraw, ImageFont \n",
"import cv2 \n",
"import numpy as np \n",
"\n",
"FONT_PATH = \"tmp/Arial.ttf\"\n",
"FONT = ImageFont.truetype(FONT_PATH, 20)\n",
"\n",
"def draw_bbox(pil_image, bbox, color=(30, 144, 255), thickness=1): \n",
" cv_image = np.array(pil_image)\n",
" cv2.rectangle(cv_image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, thickness) \n",
" return Image.fromarray(cv_image) \n",
"\n",
"def draw_mask(pil_image, mask_array, color=(30, 144, 255), alpha=0.5): \n",
" cv_image = np.array(pil_image)\n",
" cv_image[mask_array == 1] = cv_image[mask_array == 1] * (1 - alpha) + np.array(color) * alpha\n",
" return Image.fromarray(cv_image)\n",
"\n",
"def draw_mask_boundary(pil_image, mask_array, color=(30, 144, 255), thickness=1): \n",
" cv_image = np.array(pil_image)\n",
" contours, _ = cv2.findContours(mask_array, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n",
" cv2.drawContours(cv_image, contours, -1, color, thickness)\n",
" return Image.fromarray(cv_image)\n",
"\n",
"def resize_image(image, height=None, width=None):\n",
" \"\"\"\n",
" Resizes an image given the desired height and/or width.\n",
" If only one of height or width is provided, the other dimension is scaled proportionally.\n",
" If both height and width are provided, the image is resized to the exact dimensions.\n",
" \"\"\"\n",
" if height is None and width is None:\n",
" return image\n",
" \n",
" original_width, original_height = image.size\n",
" \n",
" if height is not None and width is not None:\n",
" new_size = (width, height)\n",
" elif height is not None:\n",
" new_size = (int(original_width * height / original_height), height)\n",
" else:\n",
" new_size = (width, int(original_height * width / original_width))\n",
" \n",
" return image.resize(new_size)\n",
"\n",
"\n",
"\n",
"def draw_captions(pil_image, captions, font_path, font_size=20, font_color=(0, 0, 0), bg_color=(255, 255, 255), margin_size=10, captions_color=None): \n",
" font = ImageFont.truetype(font_path, font_size) \n",
" # Calculate the total height of the padding for the captions \n",
" total_height = 0 \n",
" for caption in captions: \n",
" _, _, text_width, text_height = font.getbbox(caption)\n",
" total_height += text_height + margin_size \n",
" \n",
" # Create a new image with padding at the bottom for the captions \n",
" new_image = Image.new('RGB', (pil_image.width, pil_image.height + total_height), bg_color) \n",
" new_image.paste(pil_image, (0, 0)) \n",
"\n",
" draw = ImageDraw.Draw(new_image) \n",
" # Draw each caption \n",
" y_position = pil_image.height \n",
" for caption_id, caption in enumerate(captions): \n",
" _, _, text_width, text_height = font.getbbox(caption)\n",
" if captions_color is not None:\n",
" text_bbox = (0, y_position, text_width, y_position + text_height)\n",
" fill_color = captions_color[caption_id]\n",
" draw.rectangle(text_bbox, fill=fill_color, width=0)\n",
" draw.text((0, y_position), caption, fill=font_color, font=font) \n",
" y_position += text_height + margin_size\n",
" \n",
" return new_image \n",
" \n",
"def plot_bbox_and_captions(pil_image, bbox=None, captions=None, mask=None, font_path='tmp/Arial.ttf', font_size=20, font_color=(0, 0, 0), bg_color=(255, 255, 255), margin_size=0, captions_color=None): \n",
" if bbox is not None:\n",
" pil_image = draw_bbox(pil_image, bbox) \n",
" if mask is not None:\n",
" pil_image = draw_mask_boundary(pil_image, mask)\n",
" pil_image = resize_image(pil_image, height=512)\n",
" if captions is not None:\n",
" pil_image = draw_captions(pil_image, captions, font_path, font_size, font_color, bg_color, margin_size, captions_color=captions_color) \n",
" return pil_image \n",
"\n",
"\n",
"font_path = 'tmp/Arial.ttf'\n",
"captions = candidates + references\n",
"\n",
"import random\n",
"# Calculate the number of colors \n",
"num_colors = len(harmonious_colors) \n",
"# Generate a random start index \n",
"start_index = random.randint(0, num_colors - 1) \n",
"# Select colors in a round-robin way \n",
"selected_colors = [harmonious_colors[(start_index + i) % num_colors] for i in range(len(captions))] \n",
"captions_color = selected_colors\n",
"\n",
"pil_img_with_bbox_and_captions = plot_bbox_and_captions(image, bbox=input_boxes, captions=captions, captions_color=captions_color) \n",
"pil_img_with_bbox_and_captions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mask_db_file = 'tmp/sam_mask_db/visual_genome-densecap-local-densecap-test/results.db'\n",
"with closing(sqlite3.connect(mask_db_file)) as conn:\n",
" cursor = conn.cursor()\n",
" cursor.execute(\n",
" \"\"\" \n",
" SELECT region_cnt, image_cnt, region_id, image_id, masks, scores, input_box, gt_caption\n",
" FROM results where region_cnt = ?\n",
" \"\"\", (3,)\n",
" )\n",
" results = cursor.fetchall()\n",
" print(results)\n",
"rle_masks = results[0][4]\n",
"scores = results[0][5]\n",
"rle_masks = json.loads(rle_masks)\n",
"scores = json.loads(scores)\n",
"masks = pycocotools.mask.decode(rle_masks)\n",
"\n",
"pil_img_with_bbox_and_captions = plot_bbox_and_captions(image, bbox=input_boxes, mask=masks[..., -1], captions=captions, captions_color=captions_color) \n",
"pil_img_with_bbox_and_captions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load the infer json\n",
"infer_json_path_dict = {\n",
" \"sam_cap-git_large\": \"amlt/111523.exp.sam_captioner/infer_sam_captioner_region_chunkify/microsoft/git-large/infer-post_processed/infer-visual_genome-densecap-local-densecap-test.json.post.json\",\n",
" \"sam_cap-blip_large\": \"amlt/111523.exp.sam_captioner/infer-sam_captioner-region_chunkify-eval_suite/Salesforce/blip-image-captioning-large/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json.post.json\",\n",
" \"sam_cap-blip2_opt_2_7b\": \"amlt/111523.exp.sam_captioner/infer-sam_captioner-region_chunkify-eval_suite/Salesforce/blip2-opt-2.7b/infer-post_processed/infer-visual_genome-densecap-local-densecap-test.json.post.json\",\n",
" \"grit\": \"amlt/111523.exp.grit/infer-promptable-grit/infer-post_processed/infer-visual_genome-densecap-local-densecap-test.json.post.json\", \n",
" \"vg-gpt2l-bs_32-lsj\": \"/home/t-yutonglin/xiaoke/segment-caption-anything-v2/amlt/111423.exp-only_vg-finetune_vg/111323.infer-train-sca-ablat-lsj-scale_lr-110423.4x8_fin-16x4_unfin.pre/best-gpt2-large-lsj-1xlr.110423.octo-4x8-v100-16g-no_pre/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json\",\n",
" \"vg-ollm3bv2-bs_32-lsj\": \"/home/t-yutonglin/xiaoke/segment-caption-anything-v2/amlt/110723.exp.ablat-lsj-scale_lr-running-2/infer-train-sca-ablat-lsj-scale_lr-110423-110723.running-2/best-fp16-ollm3bv2-large-lsj-1xlr.110423.octo-4x8-v100-16g-no_pre/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json\",\n",
" \"o365_vg-gpt2l-bs_64-lsj\": \"/home/t-yutonglin/xiaoke/segment-caption-anything-v2/amlt/111423.exp-only_vg-finetune_vg/111323.infer-train-sca.finetune_lsj_scale_lr-o365_1e_4_1xlr_lsj.111023.4x8_fin-16x4_unfin.pre/best-111223.rr1-4x8-v100-32g-pre.fintune-gpt2_large-lr_1e_4-1xlr-lsj-bs_2-o365_1e_4_no_lsj_bs_64/vg-densecap-region_descriptions/infer-post_processed/infer-visual_genome-region_descriptions_v1.2.0-test.json\",\n",
"}\n",
"\n",
"for job_name, json_path in infer_json_path_dict.items():\n",
" print(f\"job_name: {job_name}\")\n",
" print(f\"is exists: {os.path.exists(json_path)}\")\n",
" assert os.path.exists(json_path), f\"{json_path} not exists\"\n",
"\n",
"class MultiInferJson(torch.utils.data.Dataset):\n",
" def __init__(self, infer_json_path_dict):\n",
" self.infer_json_path_dict = infer_json_path_dict\n",
" self.infer_json_dict = dict()\n",
" for job_name, json_path in tqdm.tqdm(self.infer_json_path_dict.items(), desc=\"Load json\"):\n",
" with open(json_path, \"r\") as f:\n",
" self.infer_json_dict[job_name] = json.load(f)\n",
" \n",
" # check their length\n",
" first_key = next(iter(self.infer_json_dict))\n",
" for job_name, infer_json in self.infer_json_dict.items():\n",
" assert len(infer_json) == len(self.infer_json_dict[first_key]), f\"length not match for {job_name}\"\n",
" self._len = len(self.infer_json_dict[first_key])\n",
" \n",
" def __len__(self):\n",
" return self._len\n",
" \n",
" def __getitem__(self, idx):\n",
" return {job_name: infer_json[idx] for job_name, infer_json in self.infer_json_dict.items()}\n",
"\n",
"infer_json_dataset = MultiInferJson(infer_json_path_dict)\n",
"\n",
"def check_region_id_image_id(infer_json_dataset):\n",
" for sample in tqdm.tqdm(infer_json_dataset, desc=\"Check region_id and image_id\"):\n",
" first_key = next(iter(sample))\n",
" image_id = sample[first_key][\"metadata\"][\"metadata_image_id\"]\n",
" region_id = sample[first_key][\"metadata\"][\"metadata_region_id\"]\n",
" for job_name, region_pred in sample.items():\n",
" assert image_id == region_pred[\"metadata\"][\"metadata_image_id\"], f\"image_id not match for {job_name}\"\n",
" assert region_id == region_pred[\"metadata\"][\"metadata_region_id\"], f\"region_id not match for {job_name}\"\n",
"\n",
"check_region_id_image_id(infer_json_dataset)\n",
"infer_json_dataset_iter = iter(infer_json_dataset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def plot_one_region(infer_json_dataset, region_cnt):\n",
" samples = infer_json_dataset[region_cnt]\n",
" first_key = next(iter(samples))\n",
" EVAL_DATASET_SPLIT = 'visual_genome-densecap-local-densecap-test'\n",
"\n",
" first_sample = samples[first_key]\n",
"\n",
" image_id = first_sample[\"metadata\"][\"metadata_image_id\"]\n",
" region_id = first_sample[\"metadata\"][\"metadata_region_id\"]\n",
" input_boxes = first_sample[\"metadata\"][\"metadata_input_boxes\"]\n",
"\n",
" sample_cnt = image_id_to_dataset_id_mapping[EVAL_DATASET_SPLIT][str(image_id)]\n",
" sample = eval_dataset[EVAL_DATASET_SPLIT][sample_cnt]\n",
" image = sample[\"image\"]\n",
"\n",
" references = first_sample[\"references\"]\n",
"\n",
" candidates = []\n",
" for job_name, region_pred in samples.items():\n",
" candidates.extend(region_pred[\"candidates\"])\n",
"\n",
" font_path = 'tmp/Arial.ttf'\n",
"\n",
" # Calculate the number of colors \n",
" num_colors = len(harmonious_colors) \n",
" # Generate a random start index \n",
" # start_index = random.randint(0, num_colors - 1) \n",
" start_index = 4\n",
" # Select colors in a round-robin way \n",
" selected_colors = [harmonious_colors[(start_index + i) % num_colors] for i in range(len(candidates))] \n",
"\n",
" captions_color = selected_colors + [(255,255,255)]\n",
" captions = candidates + references\n",
" \n",
" model_color_fig_path = os.path.join(training_args.output_dir, \"model_color_fig.png\")\n",
" if not os.path.exists(model_color_fig_path):\n",
" model_name = [job_name for job_name in samples.keys()]\n",
" model_color_fig = draw_captions(Image.new('RGB', (256, 0)), model_name, font_path, captions_color=selected_colors)\n",
" model_color_fig.save(model_color_fig_path)\n",
" print(f\"save model_color_fig to {model_color_fig_path}\")\n",
"\n",
" pil_img_with_bbox_and_captions = plot_bbox_and_captions(image, input_boxes, captions, font_path, captions_color=captions_color, margin_size=5) \n",
" return pil_img_with_bbox_and_captions, f\"{region_cnt}-{sample_cnt}-{region_id}-{image_id}.png\"\n",
"\n",
"region_cnt = 0\n",
"pil_img_with_bbox_and_captions, pil_img_with_bbox_and_captions_path = plot_one_region(infer_json_dataset, region_cnt)\n",
"pil_img_with_bbox_and_captions.save(os.path.join(training_args.output_dir, pil_img_with_bbox_and_captions_path))\n",
"pil_img_with_bbox_and_captions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def _add_prefix_suffix_to_path(path: str, prefix: str, suffix: str) -> str:\n",
" base_dir, filename = os.path.split(path)\n",
" return os.path.join(base_dir, prefix + filename + suffix)\n",
"\n",
"score_json_path_dict = {}\n",
"# CIDEr-D-scores.infer-visual_genome-region_descriptions_v1.2.0-test.json.json\n",
"SCORE_PREFIX = \"CIDEr-D-scores.\"\n",
"SCORE_SUFFIX = \".json\"\n",
"\n",
"for k, v in infer_json_path_dict.items():\n",
" score_json_path_dict[k] = _add_prefix_suffix_to_path(v, SCORE_PREFIX, SCORE_SUFFIX)\n",
"for job_name, score_json_path in score_json_path_dict.items():\n",
" print(f\"job_name: {job_name}\")\n",
" print(f\"is exists: {os.path.exists(score_json_path)}\")\n",
" assert os.path.exists(score_json_path), f\"{score_json_path} not exists\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"score_json_dict = {}\n",
"for k, v in score_json_path_dict.items():\n",
" with open(v, \"r\") as f:\n",
" score_json_dict[k] = json.load(f)\n",
"def build_score_df(score_json_dict):\n",
" return pd.DataFrame.from_dict({k: v for k, v in score_json_dict.items()})\n",
"score_df= build_score_df(score_json_dict)\n",
"score_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the dist of scores for different column\n",
"import matplotlib.pyplot as plt\n",
"def plot_score_desc(score_df):\n",
" fig, ax = plt.subplots(figsize=(5, 3))\n",
" for col_name in score_df.columns:\n",
" col_seris = score_df[col_name].sort_values(ascending=False)\n",
" col_values = col_seris.values\n",
" ax.plot(col_values, label=col_name)\n",
" ax.legend()\n",
" ax.set_xlabel(\"samples\")\n",
" ax.set_ylabel(\"score\")\n",
" return fig, ax\n",
"fig, ax = plot_score_desc(score_df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sorted_score_df = score_df.sort_values(by=\"o365_vg-gpt2l-bs_64-lsj\", ascending=False)\n",
"sorted_score_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_regions = len(infer_json_dataset)\n",
"\n",
"sorted_score_seris = sorted_score_df.iloc[int(num_regions * 0.98521)]\n",
"region_cnt = sorted_score_seris.name\n",
"\n",
"# region_cnt = random.randint(0, num_regions-1)\n",
"\n",
"score_seris = score_df.iloc[region_cnt]\n",
"pil_img_with_bbox_and_captions, pil_img_with_bbox_and_captions_path = plot_one_region(infer_json_dataset, region_cnt)\n",
"# pil_img_with_bbox_and_captions.save(pil_img_with_bbox_and_captions_path)\n",
"print(f\"region_cnt: {region_cnt}\\nscores: {score_seris}\\nsave to: {pil_img_with_bbox_and_captions_path}\")\n",
"pil_img_with_bbox_and_captions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import base64 \n",
"from PIL import Image \n",
"import io\n",
"from IPython.display import display, HTML \n",
" \n",
"def visualize_images_html(infer_json_dataset, num_images, images_per_row=5): \n",
" images_html = \"<table>\" \n",
" region_cnt_random_list = np.random.randint(0, len(infer_json_dataset), num_images)\n",
" print(f\"The region cnt random list: {region_cnt_random_list}\")\n",
" for region_cnt in region_cnt_random_list:\n",
" if region_cnt % images_per_row == 0: \n",
" images_html += \"<tr>\"\n",
" pil_img, pil_img_note = plot_one_region(infer_json_dataset, region_cnt)\n",
" \n",
" # Create an in-memory bytes buffer \n",
" buf = io.BytesIO() \n",
" \n",
" # Save the PIL image to the buffer in PNG format \n",
" pil_img.save(buf, format='PNG') \n",
" \n",
" # Get the base64 encoded string \n",
" img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8') \n",
" \n",
" images_html += '<td><img src=\"data:image/png;base64,{}\" height=\"500\"><br>{}</td>'.format(img_base64, pil_img_note) \n",
" if region_cnt % images_per_row == images_per_row - 1: \n",
" images_html += \"</tr>\" \n",
" \n",
" images_html += \"</table>\" \n",
" print(f\"html is ready!\")\n",
" display(HTML(images_html)) \n",
"\n",
"visualize_images_html(infer_json_dataset, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from flask import Flask, render_template \n",
"from PIL import Image \n",
"import io \n",
"import base64 \n",
" \n",
"app = Flask(__name__) \n",
" \n",
"@app.route('/') \n",
"def home(): \n",
" num_images = 10 \n",
" images_per_row = 5 \n",
" images = [] \n",
" for i in range(num_images): \n",
" pil_img, pil_img_note = plot_one_region(infer_json_dataset, region_cnt) # Assuming dataset[i] returns a tuple of (image, caption) \n",
" buf = io.BytesIO() \n",
" pil_img.save(buf, format='PNG') \n",
" img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8') \n",
" images.append((img_base64, pil_img_note)) \n",
" return render_template('tmp/home.html', images=images, images_per_row=images_per_row) \n",
" \n",
"if __name__ == '__main__': \n",
" app.run(debug=True) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "sca-v2",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|