File size: 10,523 Bytes
002bd9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import sys
sys.path.append(".")
sys.path.append("./scripts/notebooks")
import gradio as gr
import torch
from PIL import Image
import requests
import numpy as np
import time
import matplotlib.pyplot as plt
import io
import logging
import os
import hydra
from omegaconf import DictConfig, OmegaConf
from src.arguments import (
global_setup,
)
from transformers import set_seed
from src.train import prepare_model, prepare_processor
from amcg import ScaAutomaticMaskCaptionGenerator
import dotenv
logger = logging.getLogger(__name__)
model = None
processor = None
@hydra.main(version_base="1.3", config_path="../../src/conf", config_name="conf")
def main(args: DictConfig) -> None:
global model, processor
# NOTE(xiaoke): follow https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification.py
logger.info(OmegaConf.to_yaml(args))
args, training_args, model_args = global_setup(args)
# Set seed before initializing model.
set_seed(args.training.seed)
# NOTE(xiaoke): load sas_key from .env for huggingface model downloading.
logger.info(f"Try to load sas_key from .env file: {dotenv.load_dotenv('.env')}.")
use_auth_token = os.getenv("USE_AUTH_TOKEN", False)
processor = prepare_processor(model_args, use_auth_token)
model = prepare_model(model_args, use_auth_token)
return model, processor
if __name__ == "__main__":
main()
cache_dir = ".model.cache"
device = "cuda" if torch.cuda.is_available() else "cpu"
# sam_model = "facebook/sam-vit-huge"
# captioner_model = "Salesforce/blip-image-captioning-base"
# captioner_model = "microsoft/git-large"
# captioner_model = "Salesforce/blip2-opt-2.7b"
clip_model = "openai/clip-vit-base-patch32"
img_url = "https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg"
raw_image = Image.open(requests.get(img_url, stream=True).raw)
model = model.to(device)
# sam_processor = processor.sam_processor
# captioner_processor = processor.captioner_processor
# clip = CLIPModel.from_pretrained(clip_model, cache_dir=cache_dir).to(device)
# clip_processor = CLIPProcessor.from_pretrained(clip_model, cache_dir=cache_dir)
# NOTE(xiaoke): in original clip, dtype is float16, here we use float32 as hf default
dtype = model.dtype
NUM_OUTPUT_HEADS = 3
LIBRARIES = ["multimask_output"]
DEFAULT_LIBRARIES = ["multimask_output"]
auto_mask_caption_generator = ScaAutomaticMaskCaptionGenerator(model, processor)
def click_and_assign(args, visual_prompt_mode, input_point_text, input_boxes_text, evt: gr.SelectData):
x, y = evt.index
if visual_prompt_mode == "point":
input_point_text = f"{x},{y}"
elif visual_prompt_mode == "box":
if len(input_boxes_text.split(",")) == 2:
input_boxes_text = f"{input_boxes_text},{x},{y}"
else:
input_boxes_text = f"{x},{y}"
return input_point_text, input_boxes_text
def box_and_run(input_image, args, input_boxes_text):
x, y, x2, y2 = list(map(int, input_boxes_text.split(",")))
input_boxes = [[[x, y, x2, y2]]]
return run(args, input_image, input_boxes=input_boxes)
def point_and_run(input_image, args, input_point_text):
x, y = list(map(int, input_point_text.split(",")))
input_points = [[[[x, y]]]]
return run(args, input_image, input_points=input_points)
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]["segmentation"].shape[0], sorted_anns[0]["segmentation"].shape[1], 4))
img[:, :, 3] = 0
for ann in sorted_anns:
m = ann["segmentation"]
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
if "caption" in ann:
captions: str = ann["caption"]
# calculate the centroid of the mask
y, x = np.where(m)
random_index = np.random.choice(range(len(x)))
random_position = (x[random_index], y[random_index])
# display the caption at the centroid of the mask
ax.text(*random_position, captions, color="white", fontsize=12, ha="center", va="center")
ax.imshow(img)
def auto_mode(input_image):
np_input_image = np.array(input_image)
outputs = auto_mask_caption_generator.generate(np_input_image)
dpi = 80
height, width, _ = np_input_image.shape
figsize = width / float(dpi), height / float(dpi)
plt.figure(figsize=figsize)
plt.imshow(input_image)
show_anns(outputs)
plt.axis("off")
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
img = Image.open(buf)
return img
def run(args, input_image, input_points=None, input_boxes=None):
if input_points is None and input_boxes is None:
raise ValueError("input_points and input_boxes cannot be both None")
multimask_output = "multimask_output" in args
return_patches = "return_patches" in args
inputs = processor(input_image, input_points=input_points, input_boxes=input_boxes, return_tensors="pt")
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
# NOTE(xiaoke): in original clip, dtype is float16
inputs[k] = v.to(device, dtype if v.dtype == torch.float32 else v.dtype)
tic = time.perf_counter()
with torch.inference_mode():
model_outputs = model.generate(**inputs, multimask_output=multimask_output, num_beams=3)
toc = time.perf_counter()
print(f"Time taken: {(toc - tic)*1000:0.4f} ms")
batch_size, num_masks, num_text_heads, num_tokens = model_outputs.sequences.shape
batch_size, num_masks, num_mask_heads, *_ = model_outputs.pred_masks.shape
if batch_size != 1 or num_masks != 1:
raise ValueError("batch_size and num_masks must be 1")
captions = processor.tokenizer.batch_decode(
model_outputs.sequences.reshape(-1, num_tokens), skip_special_tokens=True
)
# NOTE: sometimes, num_text_heads < num_mask_heads, as we have split the text head with the mask head in SCA.
if num_text_heads < num_mask_heads:
captions += [captions[-1]] * (num_mask_heads - num_text_heads)
masks = processor.post_process_masks(
model_outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
) # List[(num_masks, num_heads, H, W)]
iou_scores = model_outputs.iou_scores # (batch_size, num_masks, num_heads)
# patches = model_outputs.patches # List[List[Image.Image]]
patches = None
outputs = []
# Tuple[numpy.ndarray | PIL.Image | str, List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]]
# (batch_size(1), region_size(1), num_heads)
iou_scores = iou_scores[0][0]
for i in range(num_mask_heads):
output = [input_image, [[masks[0][:, i].cpu().numpy(), f"{captions[i]}|iou:{iou_scores[i]:.4f}"]]]
outputs.append(output)
for i in range(num_mask_heads, NUM_OUTPUT_HEADS):
output = [np.ones((1, 1)), []]
outputs.append(output)
# if return_patches:
# # (batch_size(1), region_size(1), num_heads)
# patches = patches[0][0]
# num_patches = len(patches)
# for i in range(num_patches):
# patch = patches[i]
# caption = captions[i]
# # https://huggingface.co/openai/clip-vit-base-patch32
# clip_inputs = clip_processor(text=[caption], images=[patch], return_tensors="pt", padding=True).to(device)
# clip_outputs = clip(**clip_inputs)
# logits_per_image = clip_outputs.logits_per_image
# output = [patches[i], [[[0, 0, 0, 0], f"{caption}|clip{logits_per_image.item():.4f}"]]]
# outputs.append(output)
# for i in range(num_patches, NUM_OUTPUT_HEADS):
# output = [np.ones((1, 1)), []]
# outputs.append(output)
# else:
for i in range(NUM_OUTPUT_HEADS):
output = [np.ones((1, 1)), []]
outputs.append(output)
return outputs
def fake_click_and_run(input_image, args, evt: gr.SelectData):
outputs = []
# Tuple[numpy.ndarray | PIL.Image | str, List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]]
num_heads = 1
for i in range(num_heads):
output = [input_image, []]
outputs.append(output)
for i in range(num_heads, NUM_OUTPUT_HEADS):
output = [input_image, []]
outputs.append(output)
return outputs
with gr.Blocks() as demo:
gr.Markdown("Welcome to the SCA Demo! We have two modes: **Prompt Mode** and **Anything Mode**.")
input_image = gr.Image(value=raw_image, label="Input Image", interactive=True, type="pil", height=500)
with gr.Tab("Prompt Mode"):
visual_prompt_mode = gr.Radio(choices=["point", "box"], value="point", label="Visual Prompt Mode")
args = gr.CheckboxGroup(choices=LIBRARIES, value=DEFAULT_LIBRARIES, label="SCA Arguments")
input_point_text = gr.Textbox(lines=1, label="Input Points (x,y)", value="0,0")
input_point_button = gr.Button(value="Run with Input Points")
input_boxes_text = gr.Textbox(lines=1, label="Input Boxes (x,y,x2,y2)", value="0,0,100,100")
input_boxes_button = gr.Button(value="Run with Input Boxes")
output_images = []
with gr.Row():
for i in range(NUM_OUTPUT_HEADS):
output_images.append(gr.AnnotatedImage(label=f"Output Image {i}", height=500))
with gr.Row():
for i in range(NUM_OUTPUT_HEADS):
output_images.append(gr.AnnotatedImage(label=f"Output Image {i}", height=500))
with gr.Tab("Anything Mode"):
run_anything_mode_button = gr.Button(value="Run Anything Mode")
output_image_for_anything_mode = gr.Image(
value=raw_image, label="Output Image", interactive=False, type="pil", height=500
)
input_image.select(
click_and_assign,
[args, visual_prompt_mode, input_point_text, input_boxes_text],
[input_point_text, input_boxes_text],
)
input_point_button.click(point_and_run, [input_image, args, input_point_text], [*output_images])
input_boxes_button.click(box_and_run, [input_image, args, input_boxes_text], [*output_images])
run_anything_mode_button.click(auto_mode, [input_image], [output_image_for_anything_mode])
demo.launch()
|