File size: 9,629 Bytes
002bd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import sys

sys.path.append(".")

import logging
import os
from typing import Optional, Dict

import hydra
import torch
from hydra.utils import instantiate
from datasets import DatasetDict, load_dataset, IterableDatasetDict
from omegaconf import DictConfig, OmegaConf
from src.data.transforms import SamCaptionerDataTransform
from src.data.collator import SamCaptionerDataCollator
from src.arguments import Arguments, global_setup, SAMCaptionerModelArguments, SCAModelArguments, SCAModelBaseArguments
from src.models.sam_captioner import SAMCaptionerConfig, SAMCaptionerModel, SAMCaptionerProcessor
from src.models.sca import ScaProcessor

from transformers.trainer_utils import get_last_checkpoint
from transformers import set_seed, Trainer
import gradio as gr
from dataclasses import dataclass
import numpy as np
from functools import partial
import pandas as pd
from src.train import prepare_datasets, prepare_data_transform, prepare_processor
import pycocotools.mask
from PIL import Image
import dotenv

logger = logging.getLogger(__name__)


@hydra.main(version_base="1.3", config_path="../../src/conf", config_name="conf")
def main(args: DictConfig) -> None:
    # NOTE(xiaoke): follow https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification.py

    logger.info(OmegaConf.to_yaml(args))
    args, training_args, model_args = global_setup(args)

    # Set seed before initializing model.
    set_seed(args.training.seed)

    # Initialize our dataset and prepare it
    train_dataset, eval_dataset = prepare_datasets(args)

    # NOTE(xiaoke): load sas_key from .env for huggingface model downloading.
    logger.info(f"Try to load sas_key from .env file: {dotenv.load_dotenv('.env')}.")
    use_auth_token = os.getenv("USE_AUTH_TOKEN", False)

    processor = prepare_processor(model_args, use_auth_token)

    train_dataset, eval_dataset = prepare_data_transform(
        training_args, model_args, train_dataset, eval_dataset, processor
    )

    # [NOTE] Used to restore the image tensor after transformed
    # Use global to avoid passing too many arguments
    global image_mean, image_std
    image_mean, image_std = (
        processor.sam_processor.image_processor.image_mean,
        processor.sam_processor.image_processor.image_std,
    )

    def view_one_batch(dataset_split, batch_idx, dataset_type):
        if dataset_type == "before_transform":
            return _view_one_batch_before_transform(dataset_split, batch_idx, dataset_type)
        elif dataset_type == "after_transform":
            return _view_one_batch_after_transform(dataset_split, batch_idx, dataset_type)
        else:
            raise ValueError(f"Unknown type of sample: {dataset_type}")

    def _view_one_batch_before_transform(dataset_split, batch_idx, dataset_type):
        sample = dataset_split[batch_idx]
        image = sample["image"]

        text = f"dataset_type: {dataset_type}\nsample_id: {batch_idx}\n"
        for k, v in sample.items():
            if isinstance(v, (int, str)):
                text += f"{k}: {v}\n"

        regions = sample["regions"]
        regions = pd.DataFrame(regions)
        regions.sort_values(by=["region_id"], ascending=True, inplace=True)
        return image, text, regions

    def _view_one_batch_after_transform(dataset_split, batch_idx, dataset_type):
        sample = dataset_split[batch_idx]
        image = sample["images"]
        image = sample["pixel_values"]
        image_mean_tensor = torch.tensor(image_mean).view(3, 1, 1)
        image_std_tensor = torch.tensor(image_std).view(3, 1, 1)
        image = image * image_std_tensor + image_mean_tensor
        image = image.clamp(0, 1) * 255
        image = image.permute(1, 2, 0).numpy().astype(np.uint8)

        PRINT_VALUE_KEYS = ["original_sizes", "reshaped_input_sizes"]
        text = f"dataset_type: {dataset_type}\nsample_id: {batch_idx}\n"
        for k, v in sample.items():
            text += f"{k}:\t{type(v)}\t"
            if k in PRINT_VALUE_KEYS:
                text += f"{v}\n"
            elif isinstance(v, str):
                text += f"{v}\n"
            elif isinstance(v, torch.Tensor):
                text += f"{v.shape}\n"
            elif isinstance(v, list):
                text += f"{len(v)}\n"
            elif isinstance(v, np.ndarray):
                text += f"{v.shape}\n"
            else:
                try:
                    text += f"{v.size}\n"
                except AttributeError:
                    text += f"{v}\n"

        REGION_KEYS = [
            "input_boxes",
            "metadata_input_boxes",
            "metadata_image_id",
            "metadata_region_id",
            "metadata_captions",
        ]
        pd_series = []
        for region_tensor_key in REGION_KEYS:
            region_tensor = sample[region_tensor_key]
            # NOTE: cast the float to int in bbox.
            if region_tensor_key == "input_boxes":
                if isinstance(region_tensor, torch.Tensor):
                    region_tensor = region_tensor.long()
                elif isinstance(region_tensor, np.ndarray):
                    region_tensor = region_tensor.astype(np.int64)
            if isinstance(region_tensor, (torch.Tensor, np.ndarray)):
                region_list = region_tensor.tolist()
            elif isinstance(region_tensor, list):
                region_list = region_tensor
            else:
                raise ValueError(f"Unknown type of region_tensor: {type(region_tensor)}")
            pd_series.append(pd.Series(region_list, name=region_tensor_key))
        regions = pd.concat(pd_series, axis=1)
        regions.sort_values(by=["metadata_region_id"], ascending=True, inplace=True)

        return image, text, regions

    def view_one_region(image, data_frame, output_chioce_radio, dataset_type, evt: gr.SelectData):
        if dataset_type == "before_transform":
            return _view_one_region_before_transform(image, data_frame, output_chioce_radio, evt)
        elif dataset_type == "after_transform":
            return _view_one_region_after_transform(image, data_frame, output_chioce_radio, evt)
        else:
            raise ValueError(f"Unknown type of sample: {dataset_type}")

    def _view_one_region_before_transform(image, data_frame, output_chioce_radio, evt):
        row_id, _ = evt.index
        region = data_frame.iloc[row_id]
        if output_chioce_radio == "segmentation" and region.get("mask", None) is not None:
            annot = region["mask"]
            annot = pycocotools.mask.decode(annot)
        elif output_chioce_radio == "segmentation" and region.get("mask", None) is None:
            x, y, w, h = region["x"], region["y"], region["width"], region["height"]
            x2, y2 = x + w, y + h
            annot = [x, y, x2, y2]
        elif output_chioce_radio == "bbox":
            x, y, w, h = region["x"], region["y"], region["width"], region["height"]
            x2, y2 = x + w, y + h
            annot = [x, y, x2, y2]
        else:
            raise ValueError(f"Unknown output_chioce_radio: {output_chioce_radio}")

        phrases = [f"{idx}: {phrase}" for idx, phrase in enumerate(region["phrases"])]
        phrases = "; ".join(phrases)
        return image, [[annot, phrases]]

    def _view_one_region_after_transform(image, data_frame, output_chioce_radio, evt):
        row_id, _ = evt.index
        region = data_frame.iloc[row_id]
        if output_chioce_radio == "segmentation" and region.get("mask", None) is not None:
            raise NotImplementedError("TODO: implement segmentation for after_transform")
        elif output_chioce_radio == "segmentation" and region.get("mask", None) is None:
            annot = list(map(int, region["input_boxes"]))
        elif output_chioce_radio == "bbox":
            annot = list(map(int, region["input_boxes"]))
        else:
            raise ValueError(f"Unknown output_chioce_radio: {output_chioce_radio}")

        phrases = region["metadata_captions"]
        if not isinstance(phrases[0], list):
            phrases = [phrases]
        phrases = [f"{idx}: {phrase}" for idx, phrase in enumerate(phrases)]
        phrases = "; ".join(phrases)
        return image, [[annot, phrases]]

    def get_gr_frame(frame_name, dataset_split):
        dataset_type = "before_transform" if dataset_split[0].get("images", None) is None else "after_transform"
        dataset_type = gr.Variable(dataset_type)
        with gr.Accordion(label=frame_name) as frame:
            batch_idx = gr.Slider(minimum=0, maximum=len(dataset_split), step=1, default=0)
            button = gr.Button(text="View the batch")
            output_chioce_radio = gr.Radio(["bbox", "segmentation"], value="bbox")

            image = gr.Image(height=500)
            text = gr.Textbox(lines=1)
            data_frame = gr.DataFrame()
            annotated_image = gr.AnnotatedImage(height=500)

            dataset_split = gr.Variable(dataset_split)
            button.click(
                view_one_batch, inputs=[dataset_split, batch_idx, dataset_type], outputs=[image, text, data_frame]
            )
            data_frame.select(
                view_one_region,
                inputs=[image, data_frame, output_chioce_radio, dataset_type],
                outputs=[annotated_image],
            )

        return frame

    with gr.Blocks() as app:
        get_gr_frame("train", train_dataset)
        for eval_data_k, eval_data_v in eval_dataset.items():
            get_gr_frame(f"validate-{eval_data_k}", eval_data_v)
    app.launch()


if __name__ == "__main__":
    main()