File size: 4,829 Bytes
002bd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sqlite3
import logging
import gradio as gr
import time
import contextlib
import os
import pandas as pd
import click

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

DISABLE_TIMEER = os.environ.get("DISABLE_TIMER", False)
DEBUG = os.environ.get("DEBUG", False)


@contextlib.contextmanager
def timer(timer_name="timer", pbar=None, pos=0):
    if DISABLE_TIMEER:
        return

    start = time.time()
    yield
    end = time.time()
    if pbar is not None:
        pbar.display(f"Time taken in [{timer_name}]: {end - start:.2f}", pos=pos)
    else:
        logger.info(f"Time taken in [{timer_name}]: {end - start:.2f}")


def get_tables_with_name_and_schema(cursor):
    # Get the list of tables
    cursor.execute("SELECT name, sql FROM sqlite_master WHERE type='table'")

    # Print the table names and their schema
    table_names = []
    table_schemas = []
    for result in cursor.fetchall():
        table_name, table_schema = result["name"], result["sql"]
        table_names.append(table_name)
        table_schemas.append(table_schema)

    return table_names, table_schemas


def load_rows(cursor, table_name):
    print(f"Loading table: {table_name}")
    pos_table_name = table_name + "_pos_extension"
    cursor.execute(
        f"""  
        SELECT {table_name}.region_id, {table_name}.phrases, {pos_table_name}.nouns, {pos_table_name}.noun_chunks
        FROM {table_name}
        JOIN {pos_table_name} ON {table_name}.region_id = {pos_table_name}.region_id
    """
        + ("LIMIT 10" if DEBUG else "")
    )

    rows = cursor.fetchall()
    logger.info(f"Finished loading table: {table_name} with {len(rows)} rows")
    return rows


def dict_factory(cursor, row):
    # NOTE: now we will be returning rows as dictionaries instead of tuples
    d = {}
    for idx, col in enumerate(cursor.description):
        d[col[0]] = row[idx]
    return d


DB = "tmp/annotation_db/objects365-local/annotations.db"


@click.command()
@click.option("--db", help="Path to the database file", default=DB)
def main(db):
    def load_db(db):
        if not os.path.exists(db):
            raise ValueError(f"Database file {db} does not exist.")
        conn = sqlite3.connect(db)

        conn.row_factory = dict_factory

        cursor = conn.cursor()
        table_names, _ = get_tables_with_name_and_schema(cursor)
        table_names = list(filter(lambda x: not x.endswith("_extension"), table_names))

        logger.info(f"Table Names: {table_names}")

        rows_ls = []
        for table_name in table_names:
            with timer():
                rows = load_rows(cursor, table_name)
                rows_ls.append(rows)

        conn.close()
        return table_names, rows_ls

    class DataFrameWithBatchSlider:
        def __init__(self, rows, num_samples, batch_size=10):
            self.rows = rows

            with gr.Row():
                self.num_samples = gr.Textbox(
                    lines=1, value=str(num_samples), label="Number of samples", interactive=False
                )
                self.batch_idx = gr.Slider(
                    minimum=0, maximum=num_samples, step=batch_size, value=0, label="batch_idx", interactive=True
                )
                self.batch_size = gr.Slider(
                    minimum=1, maximum=num_samples, step=1, value=batch_size, label="batch_size", interactive=True
                )

            self.data_frame = gr.DataFrame(pd.DataFrame(rows[0 : 0 + batch_size]))

            self.update_slider(self.batch_idx)
            self.update_slider(self.batch_size)

        def update_data_frame(self, batch_idx, batch_size):
            new_rows = self.rows[batch_idx : batch_idx + batch_size]
            return pd.DataFrame(new_rows)

        def update_slider(self, obj):
            # NOTE: This is how gr.update works. It takes an input value, and applies it to the output object
            handle = obj.change(lambda value: gr.update(value=value), inputs=[obj], outputs=[obj])
            # NOTE: if it is batch_size, we need to upate the step of batch_idx
            if obj is self.batch_size:
                handle.then(lambda step: gr.update(step=step), inputs=[obj], outputs=[self.batch_idx])
            handle.then(
                self.update_data_frame,
                inputs=[self.batch_idx, self.batch_size],
                outputs=[self.data_frame],
            )

    with gr.Blocks() as app:
        db_tb = gr.Textbox(lines=1, value=db, label="Input database path")

        table_names, rows_ls = load_db(db)
        for table_name, rows in zip(table_names, rows_ls):
            with gr.Accordion(label=table_name):
                num_samples = len(rows)
                DataFrameWithBatchSlider(rows, num_samples)

    app.launch()


if __name__ == "__main__":
    main()