File size: 12,959 Bytes
eac156b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import types
import torch
import transformers
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss
import numpy as np
class FiDT5(transformers.T5ForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
self.wrap_encoder()
def forward_(self, **kwargs):
if 'input_ids' in kwargs:
kwargs['input_ids'] = kwargs['input_ids'].view(kwargs['input_ids'].size(0), -1)
if 'attention_mask' in kwargs:
kwargs['attention_mask'] = kwargs['attention_mask'].view(kwargs['attention_mask'].size(0), -1)
return super(FiDT5, self).forward(
**kwargs
)
# We need to resize as B x (N * L) instead of (B * N) x L here
# because the T5 forward method uses the input tensors to infer
# dimensions used in the decoder.
# EncoderWrapper resizes the inputs as (B * N) x L.
def forward(self, input_ids=None, attention_mask=None, **kwargs):
if input_ids != None:
# inputs might have already be resized in the generate method
if input_ids.dim() == 3:
self.encoder.n_passages = input_ids.size(1)
input_ids = input_ids.view(input_ids.size(0), -1)
if attention_mask != None:
attention_mask = attention_mask.view(attention_mask.size(0), -1)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
**kwargs
)
# We need to resize the inputs here, as the generate method expect 2D tensors
def generate(self, input_ids, attention_mask, max_length):
self.encoder.n_passages = input_ids.size(1)
return super().generate(
input_ids=input_ids.view(input_ids.size(0), -1),
attention_mask=attention_mask.view(attention_mask.size(0), -1),
max_length=max_length
)
def wrap_encoder(self, use_checkpoint=False):
"""
Wrap T5 encoder to obtain a Fusion-in-Decoder model.
"""
self.encoder = EncoderWrapper(self.encoder, use_checkpoint=use_checkpoint)
def unwrap_encoder(self):
"""
Unwrap Fusion-in-Decoder encoder, useful to load T5 weights.
"""
self.encoder = self.encoder.encoder
block = []
for mod in self.encoder.block:
block.append(mod.module)
block = nn.ModuleList(block)
self.encoder.block = block
def load_t5(self, state_dict):
self.unwrap_encoder()
self.load_state_dict(state_dict)
self.wrap_encoder()
def set_checkpoint(self, use_checkpoint):
"""
Enable or disable checkpointing in the encoder.
See https://pytorch.org/docs/stable/checkpoint.html
"""
for mod in self.encoder.encoder.block:
mod.use_checkpoint = use_checkpoint
def reset_score_storage(self):
"""
Reset score storage, only used when cross-attention scores are saved
to train a retriever.
"""
for mod in self.decoder.block:
mod.layer[1].EncDecAttention.score_storage = None
def get_crossattention_scores(self, context_mask):
"""
Cross-attention scores are aggregated to obtain a single scalar per
passage. This scalar can be seen as a similarity score between the
question and the input passage. It is obtained by averaging the
cross-attention scores obtained on the first decoded token over heads,
layers, and tokens of the input passage.
More details in Distilling Knowledge from Reader to Retriever:
https://arxiv.org/abs/2012.04584.
"""
scores = []
n_passages = context_mask.size(1)
for mod in self.decoder.block:
scores.append(mod.layer[1].EncDecAttention.score_storage)
scores = torch.cat(scores, dim=2)
bsz, n_heads, n_layers, _ = scores.size()
# batch_size, n_head, n_layers, n_passages, text_maxlength
scores = scores.view(bsz, n_heads, n_layers, n_passages, -1)
scores = scores.masked_fill(~context_mask[:, None, None], 0.)
scores = scores.sum(dim=[1, 2, 4])
ntokens = context_mask.sum(dim=[2]) * n_layers * n_heads
scores = scores/ntokens
return scores
def overwrite_forward_crossattention(self):
"""
Replace cross-attention forward function, only used to save
cross-attention scores.
"""
for mod in self.decoder.block:
attn = mod.layer[1].EncDecAttention
attn.forward = types.MethodType(cross_attention_forward, attn)
class EncoderWrapper(torch.nn.Module):
"""
Encoder Wrapper for T5 Wrapper to obtain a Fusion-in-Decoder model.
"""
def __init__(self, encoder, use_checkpoint=False):
super().__init__()
self.encoder = encoder
apply_checkpoint_wrapper(self.encoder, use_checkpoint)
def forward(self, input_ids=None, attention_mask=None, **kwargs,):
# total_length = n_passages * passage_length
bsz, total_length = input_ids.shape
passage_length = total_length // self.n_passages
input_ids = input_ids.view(bsz*self.n_passages, passage_length)
attention_mask = attention_mask.view(bsz*self.n_passages, passage_length)
outputs = self.encoder(input_ids, attention_mask, **kwargs)
outputs = (outputs[0].view(bsz, self.n_passages*passage_length, -1), ) + outputs[1:]
return outputs
class CheckpointWrapper(torch.nn.Module):
"""
Wrapper replacing None outputs by empty tensors, which allows the use of
checkpointing.
"""
def __init__(self, module, use_checkpoint=False):
super().__init__()
self.module = module
self.use_checkpoint = use_checkpoint
def forward(self, hidden_states, attention_mask, position_bias, **kwargs):
if self.use_checkpoint and self.training:
kwargs = {k: v for k, v in kwargs.items() if v is not None}
def custom_forward(*inputs):
output = self.module(*inputs, **kwargs)
empty = torch.tensor(
[],
dtype=torch.float,
device=output[0].device,
requires_grad=True)
output = tuple(x if x is not None else empty for x in output)
return output
output = torch.utils.checkpoint.checkpoint(
custom_forward,
hidden_states,
attention_mask,
position_bias
)
output = tuple(x if x.size() != 0 else None for x in output)
else:
output = self.module(hidden_states, attention_mask, position_bias, **kwargs)
return output
def apply_checkpoint_wrapper(t5stack, use_checkpoint):
"""
Wrap each block of the encoder to enable checkpointing.
"""
block = []
for mod in t5stack.block:
wrapped_mod = CheckpointWrapper(mod, use_checkpoint)
block.append(wrapped_mod)
block = nn.ModuleList(block)
t5stack.block = block
def cross_attention_forward(
self,
input,
mask=None,
kv=None,
position_bias=None,
past_key_value_state=None,
head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
This only works for computing cross attention over the input
"""
assert(kv != None)
assert(head_mask == None)
assert(position_bias != None or self.has_relative_attention_bias)
bsz, qlen, dim = input.size()
n_heads, d_heads = self.n_heads, self.d_kv
klen = kv.size(1)
q = self.q(input).view(bsz, -1, n_heads, d_heads).transpose(1, 2)
if past_key_value_state == None:
k = self.k(kv).view(bsz, -1, n_heads, d_heads).transpose(1, 2)
v = self.v(kv).view(bsz, -1, n_heads, d_heads).transpose(1, 2)
else:
k, v = past_key_value_state
scores = torch.einsum("bnqd,bnkd->bnqk", q, k)
if mask is not None:
scores += mask
if position_bias is None:
position_bias = self.compute_bias(qlen, klen)
scores += position_bias
if self.score_storage is None:
self.score_storage = scores
attn = F.softmax(scores.float(), dim=-1).type_as(scores)
attn = F.dropout(attn, p=self.dropout, training=self.training)
output = torch.matmul(attn, v)
output = output.transpose(1, 2).contiguous().view(bsz, -1, self.inner_dim)
output = self.o(output)
if use_cache:
output = (output,) + ((k, v),)
else:
output = (output,) + (None,)
if output_attentions:
output = output + (attn,)
if self.has_relative_attention_bias:
output = output + (position_bias,)
return output
class RetrieverConfig(transformers.BertConfig):
def __init__(self,
indexing_dimension=768,
apply_question_mask=False,
apply_passage_mask=False,
extract_cls=False,
passage_maxlength=200,
question_maxlength=40,
projection=True,
**kwargs):
super().__init__(**kwargs)
self.indexing_dimension = indexing_dimension
self.apply_question_mask = apply_question_mask
self.apply_passage_mask = apply_passage_mask
self.extract_cls=extract_cls
self.passage_maxlength = passage_maxlength
self.question_maxlength = question_maxlength
self.projection = projection
class Retriever(transformers.PreTrainedModel):
config_class = RetrieverConfig
base_model_prefix = "retriever"
def __init__(self, config, initialize_wBERT=False):
super().__init__(config)
assert config.projection or config.indexing_dimension == 768, \
'If no projection then indexing dimension must be equal to 768'
self.config = config
if initialize_wBERT:
self.model = transformers.BertModel.from_pretrained('bert-base-uncased')
else:
self.model = transformers.BertModel(config)
if self.config.projection:
self.proj = nn.Linear(
self.model.config.hidden_size,
self.config.indexing_dimension
)
self.norm = nn.LayerNorm(self.config.indexing_dimension)
self.loss_fct = torch.nn.KLDivLoss()
def forward(self,
question_ids,
question_mask,
passage_ids,
passage_mask,
gold_score=None):
question_output = self.embed_text(
text_ids=question_ids,
text_mask=question_mask,
apply_mask=self.config.apply_question_mask,
extract_cls=self.config.extract_cls,
)
bsz, n_passages, plen = passage_ids.size()
passage_ids = passage_ids.view(bsz * n_passages, plen)
passage_mask = passage_mask.view(bsz * n_passages, plen)
passage_output = self.embed_text(
text_ids=passage_ids,
text_mask=passage_mask,
apply_mask=self.config.apply_passage_mask,
extract_cls=self.config.extract_cls,
)
score = torch.einsum(
'bd,bid->bi',
question_output,
passage_output.view(bsz, n_passages, -1)
)
score = score / np.sqrt(question_output.size(-1))
if gold_score is not None:
loss = self.kldivloss(score, gold_score)
else:
loss = None
return question_output, passage_output, score, loss
def embed_text(self, text_ids, text_mask, apply_mask=False, extract_cls=False):
text_output = self.model(
input_ids=text_ids,
attention_mask=text_mask if apply_mask else None
)
if type(text_output) is not tuple:
text_output.to_tuple()
text_output = text_output[0]
if self.config.projection:
text_output = self.proj(text_output)
text_output = self.norm(text_output)
if extract_cls:
text_output = text_output[:, 0]
else:
if apply_mask:
text_output = text_output.masked_fill(~text_mask[:, :, None], 0.)
text_output = torch.sum(text_output, dim=1) / torch.sum(text_mask, dim=1)[:, None]
else:
text_output = torch.mean(text_output, dim=1)
return text_output
def kldivloss(self, score, gold_score):
gold_score = torch.softmax(gold_score, dim=-1)
score = torch.nn.functional.log_softmax(score, dim=-1)
return self.loss_fct(score, gold_score) |